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Abstract

This analysis details the search for B+
c → B0

s π
+, B0

s → J/ψ φ decays, and the charge

conjugate mode, using the CDF II detector at the Fermi National Accelerator Laboratory.

The search is derived from a sample of 5.84 fb−1 of data from pp̄ collisions of
√
s = 1.96 TeV

collected via J/ψ trigger paths. Selection of candidate events within the Di-Muon trigger

dataset is performed in two stages, both using artificial neural networks trained to select

signal over combinatoric backgrounds. A 95% confidence upper limit is set on the number

of B+
c → B0

s π+ events within our sample, nsignal ≤ 4.15, for B0
s candidate events

of pT ≥ 4.0 GeV/c and |η| ≤ 1.0. Using this to compute the ratio
σBc → Bsπ

σBs
, a 95%

confidence limit is set on the quantity
f

B
+
c

f
B0

s

· B(B+
c → B0

s π
+) ≤ 0.00683, where f

B
+
c

is

the fragmentation fraction of b̄ quarks to B+
c mesons and fB0

s
is the fragmentation fraction

of b̄ quarks to B0
s mesons. Assuming a ratio of fragmentation fractions

f
B

+
c

f
B0

s

= 0.014, as

estimated from yields in related experiments, a limit is placed on the branching fraction,

B(B+
c → B0

s π
+) ≤ 48.8%.
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1 Introduction

Elementary particle physics has focused on the study of the smallest elements of matter and

their interactions. In the modern-day field, experimental devices to perform measurements

on the tiniest scales have, themselves, become colossal, sophisticated instruments. The Fermi

National Accelerator Laboratory (Fermilab) has, for over three decades, generated advanced

experimental results in the field, including the discovery of the b quark in 1977 [1]. Today,

Fermilab is home to the Tevatron and the Collider-Detector at Fermilab (CDF), where, along

with other research, our knowledge of the b quark has made some of its greatest advancements

to date. Currently, measurements from CDF are among the most precise in all of b physics.

For the time being, the Standard Model provides the most accurate description of observed

phenomena in the field of elementary particle physics. Since its first observation in 1977, the

b quark and its study have played a strong role in helping develop, test, and challenge the

Standard Model. The measurement described in this paper, made at CDF, attempts to extend

that field of work and to add to the extensive collection of results from experiments at Fermilab.

The measurement of the branching fractions of the B+
c → B0

s π
+ mesons is the first of its kind

and adds to our understanding of heavy flavor production and decay.

This analysis is divided into thirteen chapters, four appendices, and a references list. In

the second chapter, the theoretical framework and experimental history that describes the

B+
c meson is discussed. Chapters three through five discuss the CDF II detector, with a

particular focus on the three level trigger system. The recent upgrade of the Level 1 tracking

trigger upgrade – advanced with the help of researchers at the University of Illinois at Urbana-

Champaign, including the author – is also delineated. In chapter six, monte carlo simluations

used in the analysis are examined. The seventh chapter focuses on details of this analysis

specific to the CDF II data set. Chapters eight through twelve discuss the techniques used in

and results of the search for B+
c → B0

s π+ decays in this analysis. The thirteenth and final

chapter describes possible opportunities for future research along these lines.

Within appendix A is a more detailed review of the theoretical basis for the use of artificial

neural networks in this analysis. Appendix B reports the exact TCL settings used to produce

1



the custom ntuples used for this analysis. Appendix C is a tutorial document explaining the

diagnostic techniques for Level 1 trigger hardware. Lastly, appendix D is a thorough diagnostic

from the B+
c neural network training broken down according to the input variables, ordered by

variable significance in selection.
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2 Theoretical Framework

2.1 Matter and its Interactions in the Standard Model

To our current understanding, matter is made up of a limited variety of particles which serve

as building blocks. These particles interact with one another, and it is by the nature of these

interactions that we classify these particles. Currently, the best description of the properties of

particles and their interactions is found in the Standard Model, which is defined as the directly

factorizable gauge group, SU(3)⊗ SU(2)⊗U(1) [2]. Interactions in the Standard Model are

mediated by gauge bosons associated with the local symmetries of the model. Matter is divided

into two classes, quarks and leptons, as described below.

Quarks are classified in three families, which each include a left-handed doublet and two

right-handed singlets, where handedness refers to weak isospin chiralities, labeled below with

the subscripts “L” and “R”, respectively. As the W± boson does not interact with right-handed

fermions (or left-handed anti-fermions), right-handed neutrinos have no gauge interactions, and

are thus not included in the listings below.

QL =







uL

dL






,







cL

sL






,







tL

bL






(1)

QR = uR, dR, cR, sR, tR, bR (2)

LL =







νe
L

eL






,







νµ
L

µL






,







ντ
L

τL






(3)

LR = eR, µR, τR (4)

All quarks and leptons are fermions, with an intrinsic spin quantum number of 1
2 . The

“up-type” quarks, represented by u, c, and t in equation 1, all have charge + 2
3 , while their

doublet counterparts, the “down-type” quarks (d, s, and b in equation 1) each have charge − 1
3 .

Each of the neutrinos, (νe, νµ, and ντ ) are charge neutral, while their counterparts, (e, µ, τ)

all have charge −1.

All fundamental particles, fermions and bosons, have corresponding antiparticles within the

3



Standard Model that have equal mass, lifetime, and intrinsic angular momentum, but an equal

and opposite charge. The Standard Model does not make predictions of the masses of the

fermions. The values of these masses, as they have been determined in experiments are shown

in Table 1 [3].

Mass [GeV/c2] Charge
Q

u
a
rk

s
u (1.5 to 3.3)·10−3 2

3
d (3.5 to 6.0)·10−3 − 1

3

c 1.27+0.07
−0.11

2
3

s 105+25
−35 · 10−3 − 1

3
t 171.3±1.1±1.2 2

3

b 4.20+0.17
−0.07 − 1

3

L
ep

to
n
s

νe < 225 · 10−9 CL 95% 0
e (0.510998910±0.000000013)·10−3 -1
νµ < 0.19 · 10−3 CL 90% 0
µ (105.658367±0.000004)·10−3 -1
ντ < 18.2 · 10−3 CL 95% 0
τ 1776.84± 0.17 · 10−3 -1

Table 1: Experimental determinations of fermion masses [3].

In the Standard Model, all fermions couple to bosons (W± and Z0) that mediate the

weak force. Also, all charged fermions couple to photons (γ), the bosons that mediate the

electromagnetic force. Further, each of the quarks, due to an additional quantum number they

possess called “color,” also couple to a collection of gauge bosons called gluons (g).

2.1.1 QCD in the Standard Model

The strength of the color force is sufficiently great that quarks are not observed in the laboratory

in isolation. Instead, particles may be produced by vacuum fluctuations in order to balance the

color to a neutral (or “white”) state, overall. This color confinement causes the high energy

collisions of particles to have a complicated dynamics involving “hadronization,” wherein quarks

produced in collision with high transverse momentum produce new bound states with particles

generated in vacuum fluctuations.

It is worth noting that, in contrast to quantum electrodynamics, quantum chromodynamics

(QCD) is a non-perturbative theory. As a result, the fragmentation and hadronization processes

4



in physics cannot be determined from first principles. In high energy scenarios, however, the

coupling constant in QCD decreases logarithmically, and the dynamics become amenable to

perturbation theory. Further, this running coupling constant allows for an asymptotic freedom,

where at sufficiently short length scales, the color force becomes arbitrarily weak.

2.1.2 The Cabibbo-Kobayashi-Maskawa Matrix

While all fermions couple to the weak force, interactions between generations are mediated

exclusively by W± bosons. Via radiation of a W±, each quark may couple with any of three

other possible quarks – any “up-type” quark may couple with any “down-type” quark and

vice-versa. The Standard Model permits an interpretation that generational mixing via the

weak force is the result of differences in the mass eigenstates and flavor eigenstates. The

transformation between the flavor basis and the mass basis can thus be represented as a 3 × 3

matrix, VCKM, (named the Cabibbo-Kobayashi-Maskawa matrix, for scientists Nicola Cabibbo,

Makoto Kobayashi, and Toshihide Maskawa) as shown in Equation 5 [4, 5].

VCKM =













Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb













(5)

The eighteen parameters corresponding to the nine complex elements of this array are

constrained within the standard model. The matrix is constrained to be unitary, meaning

VCKMV†
CKM = 1. This requirement, given that there are only three generations of quarks,

implies that there are only nine free parameters. In addition, the complex phase of each

element does not have a physical meaning. Thus, a global phase can be set to unity for the

matrix, while the remaining four relative phases will have no physical meaning.

Unitarity, as defined in equation 6, generates a system of equations from the elements of

the matrix (and their complex conjugates) as shown in equation 7.

5



VCKMV†
CKM = 1 (6)

∑

k

VkiV
∗
kj = δij , k ∈ {u, c, t}, i, j ∈ {d, s, b} (7)

∴ VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (8)

By selecting the case i = d and j = b, equation 7 generates equation 8 to explicitly show

the relationship among 6 particular elements of the CKM matrix.

Through experiment, it is determined that the matrix is nearly diagonal. This fact provides

an opportunity to approximate the elements. After selecting a global phase, an approximation

is expressed in equation 9 [6].

VCKM =













c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
−iδ13 c12c23 − s12s23s13e

−iδ13 s23c13

s12c23 − c12s23s13e
−iδ13 −c12c23 − s12s23s13e

−iδ13 c23c13













(9)

Here, sij and cij represent the operations sin θij and cos θij respectively, acting on a

rotational angle θij ; δ13 is the phase corresponding the components of the matrix with complex

value. While this is the standard representation of the CKM matrix, we are able to create

another, equivalent representation using four new parameters, from functions of sij , cij , θij ,

and δ13. These four new parameters are defined in equation 10 [7].

λ
def
= s12

Aλ2 def
= s23

Aλ3(ρ− iη)
def
= s13e

−iδ13

η/ρ
def
= s13/c13 (10)

In using these four new parameters, we create a new representation of the CKM matrix

6



that relies on the diagonal nature of the elements. That is, a polynomial expansion in powers

of λ (which is less than one), becomes increasingly accurate. This approach is termed the

Wolfenstein parameterization, and is shown (to order O(λ3)) in equation 11.

VCKM ≈













1 − λ2

2 λ Aλ3(ρ− iη)

−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1













(11)

If equation 8 is expressed using the Wolfenstein parameterization, each term is of order O(λ3)

in the expression, making the variables in this equation more readily studied by experimental

means. Rewriting and rearranging this equation using Wolfenstein parameters is shown in

equation 12.

VudV
∗
ub

VcdV ∗
cb

+
VtdV

∗
tb

VcdV ∗
cb

= −1

−VudV
∗
ub

VcdV ∗
cb

+

(

−VtdV
∗
tb

VcdV ∗
cb

)

= 1

(

1 − λ2

2

)

(ρ+ iη) +

(

−VtdV
∗
tb

VcdV ∗
cb

)

= 1

ρ̄
def
= ρ

(

1 − λ2

2

)

η̄
def
= η

(

1 − λ2

2

)

(ρ̄+ iη̄) +

(

−VtdV
∗
tb

VcdV ∗
cb

)

= 1 (12)

In this presentation, the two, newly-defined parameters, ρ̄ and η̄ can be thought of as co-

ordinates on the complex plane, ρ̄ defining a distance along the real axis, η̄ defining a distance

along the imaginary axis. In describing the variables in this way, we can use equation 12 to

draw a triangle with a base normalized in length to unity. The other legs of the triangles

connect at the point (ρ̄, η̄) in the complex plane. A diagram showing this construction is shown

in Figure 1.

The angles shown in the Unitarity Triangle of Figure 1 are of direct physical significance.

7



Figure 1: The Unitarity Triangle. A representation of the values ρ̄ and iη̄ in the complex
plane.
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For example, were β measured to be zero, CP violation would not be present in the Standard

Model. However, CP violation has been observed, and β has been measured to be significantly

above zero. The most recent measures of each of these angles are shown in Table 2 [3]. Measures

of the Wolfenstein parameters are listed in Table 3 [3].

α
def
= arg

(

− VtdV ∗

tb

VudV ∗

ub

)

α =
(

88+6
−5

)◦

β
def
= arg

(

−VcdV ∗

cb

VtdV ∗

tb

)

sin 2β = 0.681± 0.025

γ
def
= arg

(

−VudV ∗

ub

VcdV ∗

cb

)

γ =
(

77+30
−32

)◦

Table 2: Experimental measures of the Interior Angles of the Unitarity Triangle [3].

Parameter Value

λ 0.2257+0.0009
−0.0010

A 0.814+0.021
−0.022

ρ̄ 0.135+0.031
−0.016

η̄ 0.349+0.015
−0.017

Table 3: Experimental determinations of the Wolfenstein Parameters [3].

The different experimental measures of the coordinates of ρ̄ and η̄ have been fairly consistent.

The overlap of these measurements has been plotted in Figure 2 [3]. This analysis provides

an opportunity to directly study the competing tree-level decay modes of the B+
c , which is

probative to the values of Vcb, and Vcs.

2.2 Lifetimes of B Mesons

As a result of color confinement, quarks are not seen in isolation in nature. Thus, any measure

of the lifetime associated with b quarks comes from a measure of the lifetime of B hadrons.

Because weak force mediated decays of b quarks are constrained within the Standard Model to

change generations, they are said to be “Cabibbo-suppressed.” As a result, B mesons (other

than the Υ, the unflavored bb̄ meson) are relatively long-lived compared to other particles that

may decay by strong or electromagnetic interactions. The decays of these flavored B mesons

are often described in a “spectator model,” where the decay of the b quark drives the overall

decay rate, while the lighter quark does not directly participate in the process.

9



γ

γ

α

α

dm∆

Kε

Kε

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)
 < 0βsol. w/ cos 2

excluded at C
L > 0.95

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
excluded area has CL > 0.95

Figure 2: The overlap of various experimental measures of ρ̄ and η̄. The shaded regions
have 95% CL [3].
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Meson Measured Mass [3] Measured Lifetime [3]
B+

c 6.277± 0.006 GeV/c2 (0.453 ± 0.041)× 10−12 s
B0

s 5366.3± 0.6 MeV/c2 (1.472+0.024
−0.026) × 10−12 s

B+ 5279.17± 0.29 MeV/c2 (1.638 ± 0.011)× 10−12 s
B0 5279.50± 0.30 MeV/c2 (1.525 ± 0.009)× 10−12 s

Table 4: Weakly decaying B mesons show similar lifetimes and masses, as the b quark is
dominantly responsible for both properties. It is evident, however, that the heavy c quark
plays a role in decreasing the lifetime of the B+

c with respect to the other, lighter B mesons [3].

Indeed, this spectator model is fairly acccurate in predicting the lifetime of the light B

mesons. However, the mass of the c quark in a B+
c meson implies that this model is inappro-

priate for making a lifetime estimation. There exist other tree-level decays for the B+
c mesons

beyond b quark decay. The possible tree-level decays of the B+
c are shown in Figure 3.

b

c

c

c

W+
b

c

b

s

W+

b

c

W+

Figure 3: Three categories of B+
c decays: b decay, c decay, and annihilation to W±.

Because of the possibility of contribution of the heavy c quark in B+
c decays, Heavy Quark

Effective Theory, a powerful tool in predicting the lifetimes of B mesons in the spectator model,

is not useful in analyzing the overall B+
c lifetime. Instead, the B+

c is better understood as two

heavy quarks, similar to a cc̄ or bb̄ bound state. All of this is in line with current experimental

determinations of B meson lifetimes, which show the shorter lifetime of the B+
c compared to

those mesons where the b quark is bound with a lighter, spectator quark. The specific lifetimes

are shown in Table 4 [3].

2.3 The B+
c

Meson

2.3.1 Theoretical Significance of B+
c

The B+
c meson is the heaviest flavored ground-state meson. In Section 2.2, the relatively short

lifetime of the B+
c meson (compared to other, lighter B mesons) is attributed to the combination
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of two massive quarks to form a bound state, where both quarks contribute to the decay rate.

As an ab initio theory, lattice QCD has proven capable of predicting B+
c mass [13]. By

nature of the composition of the B+
c , a mass measurement can experimentally test the heavy-

quark methods of lattice QCD. Previous lattice QCD models for the mass splittings of bb̄ and

cc̄ pairs substantiate the expectation that light mass quarks (sea-quarks) should have a modest

contribution to computations related to the B+
c [13]. Examining new, fully reconstructed decays

of the B+
c meson in a new decay channel could refine this kind of measurement.

Perturbative QCD also provides testable predictions concerning the B+
c , including its mass

and the spectroscopy of bc̄ bound states (including the 11S0 ground state, constrained to decay

weakly, as well as other, excited bound states). An experimental comparison of these predic-

tions could clarify the importance of non-zero charm-quark mass loops in these perturbative

calculations [14].

In addition, a nonrelativistic potential model can provide strong predictions concerning

the B+
c and its excited states [15]. Further, the spectral lines, as computed in this model,

are extraordinarily narrow, allowing for radiative decays (hadronic and electromagnetic) with

potentially observable peaks in the mass distribution of particles generated near the B+
c [16].

All B+
c mesons observed thus far have been produced at the Tevatron and have decayed via

b decay to J/ψℓX or J/ψπ [3]. Existing theory, however, indicates that the dominant decay

channel is c decay, due to CKM suppression of b decay and annihilation [17]. This decay is

of particular interest, as it produces another bottom-flavored, weakly-decaying meson, the B0
s .

Thus, the full decay of B+
c → B0

sX is an opportunity to observe a “double-weak double-B

decay” for the first time.

2.3.2 Experimental History of B+
c

As mentioned in Section 2.3.1, previous observations of B+
c have occurred only in the J/ψX

channels, where the b quark directly radiates a virtual W± boson. These observations were

first reported in a search over 110 pb−1 of data taken from high energy pp̄ collisions in the

CDF detector [21]. The decay channel in this observation was B+
c → J/ψℓ±X , and the mass

plot is shown in Figure 4 [21]. Later searches were able to uncover the B+
c in a related decay,
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Year Measured B+
c Mass [3] Measured B+

c Lifetime [3]

1998 6.4 ± 0.39 ± 0.13 GeV/c2 (0.46+0.18
−0.16 ± 0.03)× 10−12 s

2006 6.2857± 0.0053± 0.0012 GeV/c2 (0.463+0.073
−0.065 ± 0.036)× 10−12 s

2008 6.2756± 0.0029± 0.0025 GeV/c2 —

Table 5: A history of B+
c mass and lifetime measurements performed at CDF II [3].

B+
c → J/ψπ+ [22]. The most recent mass measurement from this observed decay is shown

in Figure 5. A history of B+
c mass and lifetime measurements made at CDF II is shown in

Table 5 [3].

Figure 4: Histogram of the J/ψℓ mass that compares the signal and background contribu-
tions determined in the likelihood fit to the combined data for J/ψe and J/ψµ. The total Bc

contribution is 20.4+6.2
−5.5 events. The inset shows the behavior of the loglikelihood function

−2ln(L) vs. the number of Bc mesons [21].

To date, the B+
c has been observed exclusively at the Tevatron, though not for lack of

effort. Before the observation of B+
c at the Tevatron, researchers at LEP searched for B+

c

production within a sample of more than 3 million Z0 hadronic decays produced by e+e−

collisions and collected by the DELPHI Collaboration [23]. The OPAL Collaboration and

ALEPH Collaboration also searched for B+
c decays from the Z0 resonance [24, 25].
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Figure 5: Histogram of the most recent measurement of J/ψπ± mass, performed at
CDF II [22].

This analysis is the first published attempt to search for B+
c through a c decay channel, as

described in Section 2.3.1. Because theory indicates that this decay mode will be preferred,

evidence of a signal seems possible, while a lack evidence could generate considerable interest,

depending on the strength of the limit that could be set by the large sample of data recorded

at CDF.

2.3.3 B+
c Search Strategy

This analysis details, in particular, the search for B+
c → B0

s π
+, B0

s → J/ψ φ, J/ψ → µ+µ−,

φ → K+K−. This is a final state of five charged particles, to be selected within a Di-Muon

Trigger sample as described in Section 4.4.1, with precise momentum and decay length quanti-

ties are provided by the tracking system of the detector. In this section, details of the strategy

for this analysis will be reviewed.

Primary Challenges of the B+
c → B0

s π+ Search The strategy used in this analysis is

designed to overcome two major challenges: the minimization of uncertainties that affect the

final measurement; and the selection of B+
c candidates over a significant prompt B0

s+track

background, where the extra track is the result of fragmentation at the interaction point.
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To overcome the first challenge, the selection techniques used in previous searches for

B0
s→ J/ψ φ are employed to create a sample, within which B+

c → B0
s π+ candidates are

evaluated. The resulting limit on the yield of B+
c → B0

sπ
+ candidates is then computed rel-

ative to the B0
s yield. In doing so, uncertainties associated with acceptance and efficiency

are limited to the identification of a single track. Other uncertainties, such as luminosity, are

completely canceled by the technique. The details of this cancelation are shown in Chapter 12.

In order to overcome the second challenge, that of selecting B+
c signal candidates within a

large B0
s+track background, an artificial neural network is trained to select likely candidates

using a knowledge of simulated B+
c signal events as well as a sample of prompt B0

s background.

Details of the training of this neural network are discussed in Chapter 11.

Estimating the B+
c → B0

sπ
+ Branching Fraction The relative yield,

NBc (observed)
NBs (observed) , is

directly related to the branching fraction of B+
c → B0

sπ
+, by equation 13.

NBc
(obs)

NBs
(obs)

=
fc

fs

· B(B+
c → B0

s π
+) ·

(ABc
· ǫBc

ABs
· ǫBs

)

(13)

Here, A·ǫ represents the acceptance times efficiency of a decay – a product ranging between

zero and one, representing the sensitivity of the experiment to signal. The values fc and fs

correspond to the fragmentation fractions to B+
c and B0

s , respectively. The probability that a

given b̄ quark produced by the pp̄ collision will hadronize to a B+
c is represented as fc. Likewise,

fs is the likelihood that a B0
s will be produced in the hadronization of a b̄ quark.

An estimate of these two values can be extracted from experiments in other modes. By

comparing the B+
c → J/ψ π+ decay, which has been observed, to the B− → J/ψ K− yield in

data, the value of fc can be extracted, as shown in equation 14 [26, 27]. That these decays are

topologically quite similar allows for a useful comparison. In order to make an estimate of fc,

it is assumed that efficiencies and acceptances for the two modes will roughly cancel.
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N(B+
c → J/ψ π+)

N(B+ → J/ψ K+)
=

fB
+
c
· ǫB+

c
· B(B+

c → J/ψ π+)

fB+ · ǫB+ · B(B+ → J/ψ K+)

≈
f

B
+
c
· B(B+

c → J/ψ π+)

fB+ · B(B+ → J/ψ K+)

∴ fc
def
= fB

+
c

≈ fB+ · N(B+
c → J/ψ π+)

N(B+ → J/ψ K+)
· B(B+ → J/ψ K+)

B(B+
c → J/ψ π+)

= 39.9% · 108

21, 100
· 1.0 × 10−3

1.3 × 10−3

≈ 0.16% (14)

Values for number of observed events are taken from previous experiments at CDF [22], while

the B+ fragmentation fraction and branching ratio are drawn from the PDG [3], and the B+
c

branching ratio is taken from theoretical models [17]. With this estimate of fc, along with the

PDG value of fs, (11.0% [3]), the ratio of fragmentation fractions is estimated to be fc

fs
= 0.014.

This value is used, in combination with measurements of the number of B+
c → B0

s π
+ events

observed in this analysis, to estimate the branching fraction, B(B+
c → B0

s π+). Because this

technique of estimating fc

fs
= 0.014 relies on the theoretical value of B(B+

c → J/ψ π+), which

is not known precisely, an alternative value for the J/ψ π+ branching fraction (and, thus, the

fragmentation fraction and B0
s π

+ branching fraction) is examined. The resulting estimate of

the ratio of cross-sections under both estimates is shown in Section 12.6.

Using ∆m as a Discriminating Variable Both the B0
s and the B+

c mesons have been

observed at the Tevatron, and rather precise mass measurements have been made. The total

mass of the combination of the B0
s and the extra track from a B+

c → B0
sπ

+ decay should equal

the B+
c mass, as this is a fully reconstructed decay. Therefore, the difference between the mass

in this combination and the mass of the B0
s meson should be constant for B+

c → B0
sπ

+ decays,

and have better resolution as uncertainties in the B0
s reconstruction are not incorporated in

the result. This quantity, m(B0
s + π+)−m(B0

s ), also termed ∆m in this analysis, is estimated

(using PDG values of B0
s and B+

c mass) to be 0.91 GeV/c2 for all B+
c → B0

sπ
+ decays.

Other, partially reconstructed B+
c → B0

sX decays can occur, such as the B+
c → B0

sµνµ.
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These alternate decay modes always have a lower value of ∆m, due to the non-zero mass of the

undetected particle. A topologically similar decay to the B+
c → B0

sπ
+ decay is the B+

c → B∗
sπ

+,

B∗
s → B0

sγ decay. The ∆m for this decay is slightly lower, offset by the 49 MeV/c2 associated

with the spectroscopic transition of the B∗
s decay to B0

s , the electromagnetic ground state.

A Monte Carlo simulation of B+
c decays (without any background) shows the distribution

of ∆m as described above in Figure 6 [26]. The primary peak, to the right, is composed of

fully reconstructed B+
c → B0

sπ
+ candidates for which this analysis will search. Immediately

to its left is a secondary peak with the collection of events of B∗
s → B0

sγ. Events below that

are broadened by the larger phase space available to the neutral particles not detected in the

decays. No events are expected above the fully reconstructed peak in ∆m, as this region

is kinematically forbidden. Therefore, this region is useful as a sideband for understanding

background contributions in data.
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Figure 6: Monte Carlo simulation of ∆m from B+
c → B

(∗)0
s X decays. The primary peak,

located at ∆m=0.91 GeV/c2 corresponds to the fully reconstructed B+
c → B0

sπ
+ decays

sought in this analysis [26].
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2.3.4 The B+
c Meson pT Spectrum

Compared to other B mesons, little is known about the B+
c production spectrum at the Teva-

tron. However, a proper estimate of the anticipated momentum of the B+
c candidates is im-

portant to building a selection algorithm. Monte carlo simulations suggest that B0
s candidates

resulting from B+
c → B0

s π
+ decays will be softer than their prompt counterparts.

This can be understood intuitively by considering the role of the hadronization responsible

for creating B+
c and prompt B0

s particles. In the vast majority of cases, both of these species are

produced by the creation of a b quark at the interaction point, caused by the energy of collision.

The second quark, c in the case of B+
c and s in the case of B0

s , is created by hadronization –

a form of quantum vacuum fluctuation brought about by the energy associated with the color-

confinement of the scattered b quark. It is known that the energy required in a given event to

pull a c quark out of the vacuum will be greater than that required to produce an s quark. As

a result, B+
c mesons will tend to be lower in pT than prompt B0

s candidates. This means that

B+
c mesons, having a softer spectrum than prompt B0

s , should have lower acceptance by the

B0
s neural network.

2.3.5 Future Research Opportunities for B+
c

As described above, the spectroscopy of B+
c is of considerable interest to theorists. Direct

measurments of the branching ratios for B+
c → B0

sX can allow for a better understanding of

non-“spectator” effects in B+
c decay. A large collection of likely B+

c candidate events would

allow for a search for the radiative decay products of an excitation in the bc̄ bound state, as

well as for a precise measure of lifetime and mass of the B+
c meson. These searches could be

performed simultaneously within the previously observed J/ψX modes as well as candidates

from B0
sX decays.

Further, it has been speculated that B0
s mesons, which have a high mixing frequency, could

be flavor tagged at their creation using the associated track from the B+
c → B0

sπ
+ decay

vertex [16]. This would boost the already powerful B0
s mixing studies that could be performed

at LHCb, and further the understanding of CP violation in the B0
s system.
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3 The CDF II Experiment at the Tevatron

Since 1967, the Fermi National Accelerator Laboratory, located 32 miles west of Chicago, has

hosted advanced research in high-energy physics. The Tevatron, a circular proton-antiproton

accelerator and collider, is home to highest center-of-mass energy pp̄ collisions ever studied,

currently operating at
√
s = 1.96 TeV. Collisions are studied directly at two collision points

along the beamline. The Collider-Detector at Fermilab (CDF) and D∅, located at these two

collision points, have the unique opportunity to gather data at the forefront of high energy

physics.

In the first eleven years of operation, CDF accumulated 110 pb−1 of data at
√
s = 1.8

TeV. In 2001, the Tevatron was temporarily shutdown for upgrades. After this shutdown, the

Tevatron operated at its higher center-of-mass energy, and data-taking henceforth was dubbed

“Run II.” During the shutdown, CDF was upgraded to meet the new data-taking demands,

and was renamed “CDF II.” This thesis uses 5.84 fb−1 of data collected at CDF II.

3.1 The Accelerator

3.1.1 Proton Production

Before proton-antiproton collisions within the Tevatron can occur, protons and antiprotons

need to be created and accelerated to the required energy. To begin this process, protons are

accelerated to 980 GeV, using the devices shown in Figure 7 [28].

Cockroft-Walton Accelerator To begin with, hydrogen gas (H2) is converted into neg-

atively charged hydrogen ions, using molybdenum electrodes. These negatively charged ions

are then separated from other particles and accelerated through a 750 keV electrostatic field

generated by the Cockroft-Walton accelerator, shown in Figure 8 [29].

The LINAC The “LINAC,” a linear accelerator, receives negatively charged hydrogen ions

from the Cockroft-Walton accelerator at an energy of approximately 750 keV. The LINAC is

shown in Figure 9 [29]. Using oscillating RF (radio frequency) electromagnetic pulses, the
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Figure 7: Multiple stages of acceleration for protons and antiprotons are performed by
different components at Fermilab [28].

Figure 8: The first stage of acceleration is performed by Fermilab’s Cockroft-Walton ac-
clerator [29].

.
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Figure 9: Acceleration up to 400 MeV is accomplished by RF pulsing in the LINAC [29].

LINAC accelerates the ions over the course of 150 m to an energy of 400 MeV – an energy of

the same order as the hydrogen ion’s rest energy. By the LINAC’s design using RF pulses, the

ionized Hydrogen output is bunched into pulses. At the far end of the LINAC, the hydrogen

ions enter the Booster.

The Booster Negatively charged hydrogen ions enter the Booster (shown in Figure 10 [29])

at an energy of 400 MeV. Upon entering the Booster, these particles pass through a carbon

foil which strips each hydrogen ion of both electrons. The resulting bare protons enter the

Booster, a synchrotron and circular accelerator of radius 75 m. The Booster then collects these

protons into 84 bunches, each bunch containing 6 · 106 protons. Each of these bunches is then

accelerated during its passage around the Booster ring, increasing in energy by 500 keV per

proton for each revolution. By the end of acceleration within the Booster, the protons achieve

8.9 GeV, before they are passed into the Main Injector.

The Main Injector The Main Injector (shown in Figure 11 [29]) plays a role in the pro-

duction and acceleration of antiprotons, as well as the acceleration of protons. Before Run II
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Figure 10: An RF Cavity and Alternate Gradient Magnet in the Booster Accelerator

.

Figure 11: The Main Injector Tunnel showing the Main Injector (blue magnets on bottom)
and the Recycler (green magnets on top).
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began, protons from the Booster were sent directly to the Main Ring for acceleration to col-

liding energy. Currently, protons leaving the Booster are sent to the Main Injector for that

purpose. The Main Injector can receive protons or antiprotons from the Recycler and Accu-

mulator. Either protons or antiprotons can be accelerated in the Main Injector to an energy of

150 GeV before being injected into the Tevatron for further acceleration and collision.

3.1.2 Antiproton Production and Accumulation

The Antiproton Source In order to produce antiprotons, a high energy collision of a proton

beam on a fixed target of nickel is created. The protons are produced in the same accelerator

setup as described above, and are diverted from the Main Injector. The Main Injector then

fires the protons at an energy of 120 GeV at the target. A lithium lens is set up to direct the

resulting antiprotons, which are produced, along with many other species of particle, in a wide

angular distribution. At this stage, the antiprotons have an average momentum of 8 GeV, and

are produced in bunches, due to the bunching of the beam from the Main Injector. After their

creation, these antiprotons are collected into the Debuncher, where the beam loses its bunch

structure. The Debuncher transforms the bunched beam of antiprotons with a wide distribution

of energies into an unbunched, monochromatic beam. This beam can be stochastically cooled

to 8 GeV before being injected into the final stage of the antiproton source, the Accumulator

Ring. At the Accumulator Ring, the bunch structure of the antiproton beam is restored. At

this point, the 8 GeV bunched beam of antiprotons leave the antiproton source and are sent to

the Main Injector.

The Recycler Ring In 2004, a secondary storage ring for antiprotons, called the Recycler

Ring, was added in the same tunnel as the Accumulator Ring. The rate of antiproton production

is inversely related to the quantity of antiprotons stored in the Accumulator Ring. The Recycler

Ring improves the antiproton production rate by keeping the quantity of antiprotons in the

Accumulator Ring low. Since the rate limiting factor for luminosity in the Tevatron is the

production and accumulation of antiprotons, the addition of the Recycler Ring improves the

overall performance and running luminosity of the Tevatron.
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3.2 The Tevatron

3.2.1 Collisions and Luminosity

After creation and acceleration, protons and antiprotons are injected into the Tevatron in

preparation for acceleration to maximum energy and collision. Protons are injected first, as

they are easier to reproduce in the case of an unexpected abort. The Main Injector adds

150 GeV protons in 36 bunches to the Tevatron. These bunches are divided in the three sets of

twelve bunches, called trains. Each train is separated by 139 RF buckets. The twelve individual

bunches within each train are separated by 21 RF buckets, which corresponds to a separation of

396 ns for particle energies approaching the speed of light. The additional space between trains

allows for the stable injection of antiprotons and creates “abort gaps” which are necessary for

the activation of magnets in the event that the beam needs to be terminated. Antiprotons are

injected in a similar pattern of trains and bunches, heading in the opposite direction from the

protons (counter-clockwise as viewed from above).

Once injected into the Tevatron, protons and antiprotons are rapidly accelerated to their

final, collision energy of 980 GeV. This corresponds to a relativistic γ of over 1,000, or a velocity

greater than 99.9999% of c. Because, at this stage, there are two beams of 36 bunches traveling

in opposite directions, there exist many different points in the Tevatron where a collision is

theoretically possible. Electrostatic separators are used to prevent these collisions during and

after acceleration to final collision energy. Once the collision energy has been reached, some

checks of beam quality are made and the beam is “scraped” or collimated to remove poorly

bunched particles in a process called “halo removal.” After this scraping, quadrapole magnets

are used to steer the two beams into collisions at two points within the Tevatron. These two

points are the locations of the collider detectors, CDF II and D∅.

Instantaneous luminosity (L) is used to quantitatively measure the cross-sectional size of

the beams along with the frequency of beam crossings. This quantity is directly proportional

to the likelihood of inelastic scattering on a given crossing. In this sense, the instantaneous

luminosity and the time-integrated luminosity are direct measures of Tevatron performance.

To compute instantaneous luminosity, Equation 15 is used.
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L =
n·f ·NpNp̄

A
· F ( σl

β∗
)

=
n·f ·NpNp̄

2π(σ2
p+σ2

p̄)
· F ( σl

β∗
)

(15)

Here, f is the frequency of revolution for any bunch in the Tevatron; n is the number of

bunches in the Tevatron; A is the cross-sectional area of the interaction region, which can be

further broken down to the transverse widths of each beam, σp and σp̄; Np and Np̄ are the

numbers of protons and antiprotons in a given bunch, respectively; and, lastly, F ( σl

β∗
) is a form

factor that depends on the ratio of longitudinal bunch RMS (σl) and the beta function (β∗) at

the interaction point. Typical numbers for Np and Np̄ at the beginning of a store have reached

as high as 2.2× 1010, and 1.0× 1010, respectively. Typical values for σp and σp̄, the transverse

width of the beam, are approximately 30 µm.

Further, a calculation of theoretical cross-section for a given physics interaction may be used,

along with instantaneous luminosity, to predict the statistical rate at which that interaction

will proceed. The typical unit for instantaneous luminosity is the inverse microbarn per second

(which is equivalent to 1030 cm−2/sec). Thus, it is common to measure cross sections in

picobarns (or, similarly, in nanobarns).

3.3 Accelerator Performance

Since the beginning of Run II, the Tevatron has increased its instantaneous luminosity with

numerous upgrades. This increase is plotted as a function of time in Figure 12 [31]. Because

of this increasing peak instantaneous luminosity, the total integrated luminosity has grown

rapidly, and the challenge of collecting data efficiently at the collider detectors has grown. The

total integrated luminosity delivered by the Tevatron, along with the total integrated luminosity

recorded to tape by CDF II, is plotted in Figure 13 [32].
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Figure 12: Peak Luminosity and Peak Luminosity 20X Average The blue triangles
show the peak luminosity at the beginning of each store. The red diamond displays a point
representing the last 20 peak values averaged together [31].

Figure 13: Integrated Luminosity Delivered and To Tape at CDF II [32].
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3.4 CDF II

Located at the B0 interaction point on the beamline of the Tevatron, CDF II is a multipurpose

solenoidal detector. Its design allows for a broad range of physics programs, spanning from

bottom and charm studies to searches for the Higgs boson and physics beyond the Standard

Model.

The structure of the detector is shown in Figure 14. A cylindrical coordinate system has been

defined to describe the detector. The beamline as it passes through the detector is defined as

the z-axis, with the trajectory of the protons defined as the positive direction in z. The distance

perpendicular to the beamline is, naturally, defined as r, while φ is the angular measure around

the beamline. The value of φ is defined as zero in the half-plane parallel to the horizon and on

the geographic north side of the detector. (The coordinate system is also right-handed.)

Figure 14: Elevation view of one half of the CDF II detector [33].

While the polar angle, θ, is also defined, its value (which ranges from 0 to π) is usually trans-
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formed into the more useful, Lorentz-Invariant quantity, η, (also known as “pseudorapidity”)

defined in Equation 16. Occasionally, the quantity of rapidity, y is used, as defined in Equation

17, particularly when computing acceptance calculations for the detector. It is relevant that,

as a particle’s total energy rises, and its fraction of energy found in rest mass falls, the two

quantities converge to the same value.

η
def
= −ln

(

tan

(

θ

2

))

(16)

y
def
=

1

2
ln

(

E + pT

E − pT

)

(17)

A magnetic field, parallel to the beamline and pointing in the positive z direction, is pro-

duced by a solenoid. Tracking systems reside within the the solenoid and the 1.4 Tesla magnetic

field it produces, while calorimetry and muon detection systems surround the solenoid. The

various subsystems will be described briefly in the following sections.

3.4.1 Charged Particle Tracking Systems

Tracking of charged particles for CDF II is divided into four main systems: L00, SVX II, the

ISL, and the COT.

Layer 00, “L00” Measurements of a displaced vertex are central to all analyses that de-

tect B mesons, including this analysis. The typical lab-frame decay length of a B meson is

approximately 1 mm. To maximize sensitivity to these small displaced vertices, the closest

tracking devices, silicon micro strip detectors, are mounted directly to the beampipe. This

leading tracking element, depicted in Figure 15(a), is named Layer 00.

As shown in Figure 15(a), Layer 00 consists of overlapping sections of radiation-hard, oxy-

genated, silicon micro strip detectors, one at a radius of 1.35 cm and another at 1.62 cm. With

a length of 94 cm, it covers the range |η| < 4. Layer 00 is single-sided to allow large bias

voltages to ensure depletion even after extensive radiation damage, as well as for capacitance

and space reasons.
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(a) L00 (b) SVX II

Figure 15: (a): L00, the closest detector element to the interaction point [34]. (b):
Arrangement of silicon layers around the beampipe in SVX II [33].

Silicon Vertex Detector, “SVX II” Immediately surrounding Layer 00 is the SVX II,

which also measures track trajectories and vertex displacements with high precision. The

SVX II is composed of five double-sided layers of silicon arranged cylindrically around the

beampipe, as shown in Figure 15(b). Numbered from zero to four, the layer closet to the

interaction point (“Layer 0”) sits at radius r=2.1cm, while the farthest layer sits at r=17.3 cm.

These five layers are segmented in the z-direction in three distinct barrels that span the region

of |η| < 2.

Each layer of silicon is double-sided in the SVX II. One side of every layer is oriented to

make axial tracking measurements. Axial measurements directly measure the r−φ coordinate,

leaving the z coordinate to be inferred from timing information. The improve resolution, the

second side of each silicon layer is oriented in a non-axial, or “stereo” alignment to triangulate

a given track’s position. Layers 0, 1, and 3 are oriented with the silicon strips rotated by 90◦,

effectively exchanging the ability to make a measurement of the φ coordinate for the ability to

measure the z coordinate. Layers 2 and 4 are small-angle stereo, and are rotated from axial by

only 1.2◦.
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Intermediate Silicon Layers, “ISL” The ISL consists of a double-sided single strip silicon

detector in the central region of the detector (|η| < 1), and two double-sided layers of silicon

in the forward/backward region of the detector (1 < |η| < 2). It is depicted in Figure 16.

Each layer (in both the central and non-central strips) has one side devoted to axial detection,

while the other side is small angle stereo (reoriented by 1.2◦). The central region is fixed at

r = 22 cm, while the non-central sections of the ISL are located at r = 20 cm and r = 29 cm.

The primary role of the ISL is to link tracks found by the SVX II to those found by the COT by

adding information about the trajectory of each track as it passes between those two systems.

(a) ISL (b) 3D view of ISL

Figure 16: (a): Arrangement of silicon layers in the ISL [34]. (b): A 3D view of the ISL
structure [37].

Central Outer Tracker, “COT” The largest single device inside the solenoid of CDF II

is the COT, a large drift chamber covering 40 cm < r < 137 cm, and |z| < 155 cm (which

translates to |η| ≤ 1). Sense wires run the length of the cylinder and are used to detect the

flight of charged particles through the gas filling the drift chamber. The gas used is a mixture of

argon and ethane, with a small addition of tetrafluoromethane used to prevent aging. The exact

mixture is tuned to optimize the resolution of tracks generated by an event rate of 2.5 MHz

(corresponding to a time between collisions of 396 ns).

Layers of wires running the length of the chamber, which include sense wires, potential wires,
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and shaper wires, are themselves divided into eight “super-layers,” as shown in Figure 17. The

orientation of wires in these layers alternate between axial (super-layers 2, 4, 6, and 8), and

small angle stereo ±3◦ (super-layers 1, 3, 5, and 7) – super-layers 1 and 5 are rotated by +3◦,

while super-layers 3 and 7 are rotated by −3◦. While the COT is not capable of providing the

position resolution of the silicon strip detectors by its design, its large size, particularly in the

radial direction, allows for very precise momentum measurements.

(a) COT Wire Arrangement (b) COT East End Plate

Figure 17: (a): A axial cross-section schematic of three layers in super-layer 2 [38]. (b):
A schematic view of 1/6 of the COT endplate on the east end of the detector which shows
the 8 super-layers in the COT [38].

3.4.2 Particle Identification

Numerous species of charged particles have a lifetime large enough to pass completely through

the detector before decaying. These species include the electron, the muon, most pions, most

kaons, the proton, and each of their antimatter counterparts. Immediately between the COT

and the solenoid, there exists a time-of-flight detector, the “TOF,” to measure timing of tracks

leaving the tracking region, as shown in Figure 18(a). This information is one of two parts

of a particle identification (“PID”) system used to differentiate the varied species of charged

particles that can be tracked through our detector. The TOF uses the timing of a track’s exit
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from the tracking region, in conjunction with information from the COT to compute the track’s

velocity. Using curvature information from the COT, momentum, and therefore mass, can be

estimated as a means of distinguishing between the various possible species of the particle.

The TOF maintains discriminating power for tracks with pT . 1.5 GeV/c, above which timing

differences become too small, as the velocity of stable tracks begins approaching the speed of

light. The TOF is a collection of 216 scintillating bars at r = 140 cm, spanning the full range

of φ. Each bar is connected to a photomultiplier to detect the passage of the charged particles

through the scintillating material.
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Figure 18: (a): A side view of CDF II with the location of TOF shown [35]. (b): A plot
of the separation power of the TOF between different species of charged tracks as a function
of their transverse momentum. The dashed line reports the separation power for kaons and
pions using dE/dx [35].

There is a second method of performing particle identification, that of measuring the rate

of energy loss of a particle during its passage through the drift chamber. It is well-understood

that different species of charged particles will deposit energy during flight at different rates.

Since this rate of energy loss is directly proportional to the logarithm of the charge deposited,

the quantity log Q is encoded by the electronics into the width of the pulses measured by the

COT. In this way, the width of pulses measured by the COT serves as an indirect measure

of dE/dx, the rate of energy deposition of the track during flight. The ability of these two

methods to distinguish between any two species of particles is plotted as a function of track

momentum in Figure 18(b). Notably, the ability for dE/dx to discriminate between species
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persists at high momentum, where the power of TOF is diminished. In this way, these two

particle identification methods complement one another.

3.4.3 Calorimetry

Beyond the solenoid and to the sides of the tracking chamber, calorimeters provide the ability

to measure the energy of photons, electrons, and jets. Knowledge of the energy of these decay

products can, indirectly, provide an estimate of the missing energy due to neutrinos generated

during the interaction. Calorimetry measurements are not critical to this analysis, so a concise

outline of the calorimeter subsystems will be provided. The coverage of the calorimeters is com-

plete in the azimuthal angle, φ, and within the range of |η| < 3.6. The calorimeter subsystems

are divided between “central” and “plug” calorimeters according to their position in η.

Calorimetry itself is performed in two different ways – electromagnetic and hadronic. Elec-

tromagnetic calorimeters use lead as the absorbing material, while hadronic calorimeters use

iron or steel. Both use layers of plastic scintillating material within the absorbing material in

order to perform the measurement. The electromagnetic calorimeters are placed closer to the

interaction point, as they are sensitive to particle with shorter shower lengths, such as electrons

and photons. Hadronic calorimeters surround the outside of electromagnetic calorimeters.

Central Calorimeters Within the range of η < 1.1, the central calorimeters provide coverage

using towers subtending a solid angle ∆η × ∆φ = 0.1 × 15◦. The Central Electromagnetic

calorimeter is assisted in making measurements by two devices, the Central Preshower Radiator

(CPR) and the Central Electromagnetic Shower Max (CES) detectors. Located at six radiation

lengths into the CEM, the CES is designed to measure the size of a developed shower caused

by electromagnetic particles depositing energy in the detector. The CPR lies inside of the

CEM, detecting showers that are triggered by the solenoid or cryostat systems as opposed to

the absorbing materials of the CEM itself.

Outside of the CEM, the Central Hadronic calorimeters (CHA) and the Wall Hadronic

Calorimeters (WHA) detect showers caused by the passage of hadronic tracks which tend to

have larger interaction lengths. Layers of steel absorbing material 2.54 cm thick alternate with
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Figure 19: Central, wall, and plug calorimeters are shown as A, B, and C, respectively.
Towers of central and endwall calorimeters are numbered 0 through 11 as shown. Hadronic
towers 6, 7, and 8 are shared between the CHA and WHA [36].

10 mm thick layers of scintillator. As shown in Figure 19, the WHA extends the coverage of

calorimetry to |η| < 1.3. One wedge tower of the CHA and of the WHA are each shown in

Figure 20.

Plug Calorimeters The technology behind the plug calorimetry systems is analogous in

many ways to that of the central calorimeters. The plug calorimeters provide coverage in

the range of 1.1 < |η| < 3.6, and is thus the closest calorimetry system to the beampipe.

Electromagnetic calorimetry is performed by the Plug Electromagnetic calorimeter (PEM),

which, like the CEM, is aided by two subsystems for monitoring preshower radiation and shower

max radiation – the Plug Preshower Radiator (PPR) and the Plug Shower Max Detector (PSM).

The PSM, like the CES, lies six radiation lengths deep into the electromagnetic calorimeter.

The Plug Hadronic calorimeter (PHA) uses 23 layers of iron absorbers 5 cm thick alternated

with 6 mm thick scintillator layers. Along its length in the z direction, the outer edge of the

hadronic calorimeter maintains a constant η of 1.3, giving the plug its distinctive shape, as

shown in Figure 19.
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(a) Central Calorimeter Wedge (b) Wall Hadron Calorimeter Wedge

Figure 20: (a): A schematic view of one wedge of the central calorimeters. Layers of
absorbing material and scintillator alternate through the body of the calorimeter. One of
the many sets of light guides and phototubes is shown. [36]. (b): The endwall hadronic
calorimeter is shown with a calibration source that is capable of traversing the all towers,
allowing a measure of scintillator response and phototube gain [36].

3.4.4 Muon Chambers

The outermost detector systems are the muon chambers, a collection of scintillators and drift

chambers installed outside the calorimeters. At that distance from the interaction point, the

only interacting particles that reach that distance are, by vast majority muons. Drift chambers

used for muon detection are filled with a 50:50 mixture of Argon and Ethane, and contain

a single sense wire. Scintillators are used to provide timing information about the muons,

suppressing backgrounds due to cosmic rays and other sources. The fake rate of muons – the

number of muon identifications that are false positives – is at the level of a few percent. Each

muon chamber subsystem is composed of layers of drift chambers. Any collection of three

matching hits is classified as a “muon stub.” There are four separate muon detection systems

to be outlined below. Coverage for each of these systems is represented in table form in Table 6

and in graphical form in Figure 21.

The Central Muon Detector – CMU The Central Muon Detector (CMU) sits directly

outside the central calorimeters at a radius of 3.47 m, providing coverage in the range of

|η| < 0.6. Coverage in φ is broken into 24 segments, each covering 12.6◦, leaving a 2.4◦ gap in

coverage between the wedges. Resolution in the r − φ plane is at the level of 250 µm, as drift

35



Figure 21: A projection of the coverage of muon chamber systems in the plane of azimuth,
φ, and pseudorapidity, η [38].

chambers are stacked in alternating layers. Resolution in z reaches approximately 1 mm.

The Central Muon Upgrade – CMP Covering an area in the η − φ plane that overlaps

the CMU, (see Figure 21), the Central Muon Upgrade (CMP) is a box of drift chambers

surrounding the detector. The presence of this extra detector provides coverage for the gaps

of the CMU. Also, because the CMP sits behind an extra 60 cm of steel, the probability of

fake muon detection due to hadronic punch-through is reduced. While the CMP provides extra

coverage in φ for the central region, its azimuthal asymmetry gives rise to gaps of its own in

η. A layer of scintillation counters, the CSP, sits immediately outside the CMP. The location

of the CMP and CSP are shown, along with the steel absorber between these devices and the

CMU, in Figure 22.

The Central Muon Extension – CMX/CSX The Central Muon Extension (CMX) is

a collection of drift tubes arrayed as a logical extension of the CMU system. Along with

the Central Muon Scintillation Counters (CSX), the CMX provides coverage for the range of
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Figure 22: Configuration of the Central Muon Upgrade detector (CMP), Upgrade Scintil-
lator (CSP) and steel absorber in Run II. On the walls the circles are the ends of PMTs. On
the top and bottom the trapezoids are the lightguides viewed endon. [38].

Figure 23: Lower chambers for the CMX and CSX [38].
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0.6 . |η| . 1.0. The CMX is segmented into 24 sections in φ, each covering 15◦. The structure

of the arches that compose the CMX is shown in Figure 23. The azimuthal coverage of the

CMX is interrupted for a 30◦ gap in φ near the top of the detector to allow room for the solenoid

refrigerator and the Tevatron Main Ring [38].

The Intermediate Muon System – IMU Mounted around the outer radius of two steel

toroids, the Intermediate Muon System (IMU) extends the muon coverage out to 1.0 . |η| . 1.5.

As with the other muon detection systems, the IMU relies on layers of drift chambers surrounded

by a scintillator. Due to the positioning of the IMU around the toroids, the distance to the

IMU, in interaction lengths, varies in η from 6.2 up to 20.
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CMU CMP/CSP CMX/CSX IMU
Pseudo-rapidity |η| . 0.6 |η| . 0.6 0.6 . |η| . 1.0 1.0 . |η| . 1.5

coverage

Drift tube
2.68 × 6.35 cm 2.5 × 15 cm 2.5 × 15 cm 2.5 × 8.4 cm

cross-section

Drift tube length 226 cm 640 cm 180 cm 363 cm

Max drift time 800 ns 1.4 µs 1.4 µs 800 ns

Total drift tubes 2304 1076 2208 1728

Scintillation counter
2.5 cm 1.5 cm 2.5 cm

thickness

Scintillation counter
30 cm 30-40 cm 17 cm

width

Scintillation counter
320 cm 180 cm 180 cm

length

Total counters 269 324 864

Pion interaction
5.5 7.8 6.2 6.2-20

lengths

Minimum detectable
1.4 GeV/c 2.2 GeV/c 1.4 GeV/c 1.4-2.0 GeV/c

muon pT

Multiple scattering
12 cm/p (GeV/p) 15 cm/p 13 cm/p 13-25 cm/p

resolution

Table 6: Design Parameters of the CDF II Muon Detectors. Pion interaction lengths and
multiple scattering are computed at a reference angle of θ = 90◦ in CMU and CMP/CSP, at
an angle of θ = 55◦ in CMX/CSX, and show the range of values for the IMU.
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4 The Trigger

Typical events at the CDF II detector produce 200 kB of data [38]. Because the overall crossing

rate during Tevatron operation is 1.7 MHz, far more data is produced than can be recorded.

Instead, pre-selection must be performed at the hardware and software levels before record-

ing events to disk. Most events are inelastic pp̄ collisions which are generally uninteresting,

lending the output of the detector to a trigger system that can select more interesting events.

An understanding of the specific design and implementation of this trigger is critical to the

development of any analysis, as its selection criteria determine in large part what physics can

be found in the data.

The CDF II trigger system is divided into three levels. Each level considers an event

for further evaluation (at the subsequent level) or for veto. Levels 1 and 2 use hardware

to directly analyze front-end output of the detector. Level 3 relies on a farm of hundreds of

machines performing a software based analysis of nearly all the detector information. Particular

physics parameters motivate the trigger decisions at each level. The overall structure of the

trigger system is shown in Figure 24 [39, 40], and will be discussed in some detail in this

chapter. Particular focus is given to the Level 1 trigger, including its recent upgrade in 2006

to incorporate stereo tracking information in an effort to meet the challenge of increasing

luminosity provided to CDF by the Tevatron. Details about this upgrade are included in

Chapter 5.

4.1 Level 1

The first pass over front-end readout electronics on the detector is performed by the Level 1

trigger. Level 1 is a synchronous pipeline, 42 clock cycles (or 14 events) deep [38]. This pipeline

of events serves a buffer of time, during which the Level 1 can choose whether or not to pass

the event forward for consideration by Level 2. Events that are not passed forward by Level 1

are vetoed, and thus permanently dropped from consideration for future recording. By nature

of having no deadtime, each event is considered by the trigger at Level 1, the time between the

occurrence of any event and its possible Level 1 accept remains a constant 5,544 nanoseconds.
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To accommodate the timing requirements of the Level 2 trigger, the Level 1 trigger paths must

be stringent enough to keep the Level 1 accept rate at or below 28 kHz.

At Level 1, the trigger reads out only from select elements of CDF II. Information from

the silicon tracking devices, for example, is not used at Level 1. Instead, information from the

COT is used to perform a low-level form of tracking. Specifically, a Level 1 trigger subsystem,

the XFT (eXtremely Fast Tracker), uses readout from the COT, along with look-up tables, to

identify so-called “XFT tracks.” XFT tracks are a course-grained estimate of the kinematic

parameters of tracks — pT and φ — left by charged particles passing through the chamber.

As mentioned previously, stereo information for these tracks, as derived from the oblique sense

wires in the COT, has been incorporated into the Level 1 trigger as of the XFT upgrade in

2006. This adds η as a potential variable for estimation before making a decision at Level 1.

More details about the XFT upgrade can be found in Chapter 5.

Before any Level 1 decision is made, XFT tracks are matched to muon chamber and/or

calorimeter clusters to increase information available about the track. The calorimeters provide

the total energy deposited in a tower to Level 1. Muon chamber information comes from the

CMU, CMP, and CMX subsystems. Information from all of these systems is combined with

output from the XTRP, a hardware device responsible for extrapolating tracks and feeding the

three Level 1 subprocesses: L1 CAL, L1 TRACK, and L1 MUON. These three subprocesses then

report to the Global Level 1 system which makes a final decision to either reject or announce

a Level 1 Accept. This structure is shown as a diagram in Figure 25 [39].

4.2 Level 2

At Level 2, there is more time and data to make decisions. Information from SVX is included,

allowing better vertexing and tracking information to be available for the Level 2 decision. The

SVT (Silicon Vertex Trigger) has a resolution of approximately 50 µm.

The Level 2 buffer can hold up to four incoming events for consideration. This decision is

made by an asynchronous combination of hardware and software triggers. Any Level 1 accepts

that occur while the buffer is full will be vetoed. This becomes a possibility as the Level 1 accepts
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can be irregular in their frequency. This undesirable situation is declared as deadtime in the

detector. Properly designed trigger paths (tailored to the instantaneous luminosity provided

by the Tevatron) can prevent this deadtime at all but the highest instantaneous luminosities.

Typical Level 2 accept rates are are approximately 800 Hz [40]. Overall, of all the events in

the detector, less than one in 3,000 will receive a L2 accept. These events are then stored in

the DAQ buffers and provided to Level 3, which is described in the next section.

4.3 Level 3

The final level of the CDF II trigger system, Level 3, is capable of making decisions using more

advanced software techniques. The goal is to reduce the number of events by another order of

magnitude before recording to disk. To do this, the event in the detector is read out directly to

one of a farm of computers via optical fibers. Thus, the information available to the trigger at

Level 3 is, for the first time, complete. (Levels 1 and 2 each receive coarse-grained information

from many detector components.) Each computer then uses a set of criteria similar to the

Level 2 trigger requirements to make a decision. At this point, many of the Level 1 front-end

readout components can be cross-checked against their Level 3 counterparts to monitor for

errors.

4.4 Trigger Paths Used In This Analysis

This analysis in particular uses one major trigger path to collect data. This path is selected for

the yield and purity of B0
s candidates, which in turn lends itself to a search for B+

c → B0
s π

+.

4.4.1 Di-Muon (J/ψ) Trigger

The B0
s → J/ψ φ decays selected in this analysis are found within the Di-Muon Trigger dataset.

The specific requirements of the Di-Muon Trigger have evolved over time. In general, though,

the Di-Muon Trigger attempts to select events with a pair of muons produced by the occurrence

of a J/ψ in the event. The trigger decision is made by incorporating information from XFT and

the CMU and CMX. Within the Di-Muon Trigger, there are two basic trigger paths: the CMU-

CMU trigger path, selecting events with two distinct muons identified in the muon chambers in
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the central detector region; and the CMU-CMX trigger path, selecting events with one muon

in the region covered by the CMX. The fundamental requirements of the Di-Muon Trigger have

the following characteristics [46]:

• The transverse momentum and φ information is taken from the XFT tracks matched to

hits in the muon chambers. This is extrapolated to the inner radius of the muon system.

Due to the uncertainty of the extrapolation coming from multiple scattering, a window

covering the 3σ area in φ is determined and called the footprint.

• A tower in the muon system has to agree with at least one footprint. If there is agreement,

the tower is called a muon tower. A tower requires at least one of its stacks to have a

Level-1 muon track segment. A “stack” is four cells of scintillator stacked on top of each

other. It is required that at least cells 1 and 3 or 2 and 4 have hits which coincide during

the stub gate width of 396 ns.

• For the Di-Muon trigger, two muon towers are needed, which are either at different sides

(east and west) of the detector, or at least separated by two muon towers, where the gap

between two wedges is treated as a tower, as well.

4.5 Dynamic Prescales

With each beam crossing in a run of data-taking, there is a reduction in the instantaneous lu-

minosity delivered by the Tevatron. Indeed, many runs are terminated not due to any problems

at the Tevatron or at CDF or D∅, but simply because the Tevatron is capable of beginning a

fresh run with a higher delivered luminosity. As luminosity and detector occupancy fall, there

is an opportunity to tune the use of triggers to optimize the data-taking performed. CDF II

directly addresses that opportunity using different forms of dynamic prescales.

If a trigger is more time-intensive than would be feasible during the highest luminosity

acheived, it may be prescaled early in the run. This means that it may not be implemented as

a trigger until the luminosity falls below a certain level. Dynamic prescaling is a more clever

variant of this approach, where the trigger in question is used with increasingly frequency as
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the instantaneous luminosity falls. This effectively levels off the usage of the trigger system,

so that a low luminosity does not leave the trigger system idle. This leveling is shown in a

plot of Level 1 Accepts as a function of instantaneous luminosity delivered by the Tevatron,

seen in Figure 26 [41]. Further improvements, including fractional prescaling, (a more precise

implementation of dynamic prescaling), and “uber prescaling” have been implemented. The

later, the “uber prescale”, incorporates both information of the instantaneous luminosity and

of the number of slots available at Level 2. Both the fractional prescale and the uber prescale

allow for a dramatic increase in the Level 1 Accept rate on average, as shown in Figure 27 [41].

Figure 26: Dynamic prescales applied to the trigger system allow the detector to continue
recording events at or near its maximum rate while the physics inside the detector, (to wit,
the occupancy) is constantly falling with decreasing instantaneous luminosity. Shown here,
the dynamic prescales update over time, bringing the rate of Level 1 Accepts in the trigger
system back up near its maximum value [41].
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Figure 27: Fractional prescaling is a finer tuned version of the dynamic prescales shown
in Figure 26, allowing for a more precise leveling of the usage of detector over time. The
effect of fractional prescales is shown at the left of this plot. Later in the run, the so-called
“uber prescales” allow the trigger system to perform dynamic prescaling action both as a
function of instantaneous luminosity and of current trigger system available capacity. This
dramatically increases the maximum permissible Level 1 Accept rate without incurring a
significant hit to deadtime, as seen at the right on this plot [41].

5 The XFT Upgrade

The increasing instantaneous luminosity delivered by the Tevatron poses a challenge for CDF.

In order to maintain acceptable trigger rates while also reducing the rate of false positives —

the so-called “fake rate” — the Level 1 trigger required an upgrade. Planning for the upgrade

began in 2004, and the final installation occurred in 2006. Since then, fake rates have been

reduced dramatically at given instantaneous luminosities, resulting in improving data taking

at CDF [42]. This section will discuss some elements of the upgrade, with a specific, detailed

focus on the XTC2 — its design, implementation, and the diagnostic tools used to evaluate its

performance.

Multiple interactions per crossing is one of many challenges to CDF imposed by increasing

instantaneous luminosity. As luminosity delivered by the Tevatron rises, the statistical likeli-

hood of more than one pp̄ pair being involved in an inelastic collision becomes greater [38]. (For

all luminosities, the statistical distribution closely follows a Poisson curve.) Studies performed

before the Run II upgrade indicated a likely average interaction per beam crossing rate signif-
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icantly above 1 as instantaneous luminosity rose above 1032 cm−2 s−1. Figure 28 shows the

projected average interactions per crossing as a function of instantaneous luminosity. Three

dimensional information about tracks during low level triggering becomes an important tool, as

separate interactions (and the tracks they produce) can be differentiated using z information.

The XFT upgrade improved the Level 1 trigger in many ways, including the extraction of z

information from the stereo layers of the COT.
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Figure 28: Projected average number of interactions per crossing as a function of rising
instantaneous luminosity. Current instantaneous luminosities during data-taking allow for
multiple interactions in a typical crossing [38].

In Figure 29 [43], the structure of the XFT is shown after the upgrade was performed.

New components did not replace older devices, but instead were installed alongside the original

equipment [43]. The axial XFT components, shown in the top row of Figure 29, were not

changed, so as to ensure the upgrade could be reverted in case of failure. Hardware to perform

the stereo tracking at Level 1, the heart of the XFT upgrade, is shown in the bottom row of

Figure 29. The systems installed perform the analogous role to those already present in the

axial tracking trigger system: XTC2s are mezzanine cards on-board the TDC; Stereo Finders

collect information from the XTC2s via a transmission cable connected to an output module;
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the SLAM system, replacing the Linker Output Module performs the task of combining the

two data paths. Subsequently, the combined data is sent to the XTRP, as well as to a new

Tracklist board which can provide information for use in a Level 2 Trigger decision.

Figure 29: Schematic of XFT hardware after the XFT upgrade in 2006. The new hardware
to perform tracking at Level 1 trigger rates for stereo layers is shown on bottom left, with
the older, axial devices above. The two systems are merged at the SLAM boards, shown in
blue [43].

5.1 The Function of the XTC2 (XFT TDC Card 2)

Tracking in the drift chamber is performed by timing the pulses measured on the sense wires

strewn throughout the chamber. This technique is used both for the ultimate measurement of

tracking parameters in the XFT as well as for the estimation of those parameters for trigger

decisions. With the more powerful technology available during the XFT upgrade, the newer,

stereo components could provide greater resolution than their axial counterparts. This is par-

ticularly true for the XTC2, which will be discussed at length in this section.

The XTC2 (XFT TDC Card 2) is, as its name implies, a low resolution version of the TDCs

(Time to Digital Converters) used to measure pulse timing from the COT. It is mounted on
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the TDC, clipped in as a mezzanine board or “daughter card”, and given access to the same

input data (from the COT ASDQs – Amplifier Shaper Discriminator dE
dx

) as the TDC. Thus

the output provided by the XTC2s can be cross-checked against the later TDC output, which

should be the same, albeit with a finer resolution.

Eleven windows of time are evaluated when the XTC2 makes its decision. However, only six

bits of data will eventually be output by the XTC2. Thus, there is a logical mapping between

the eleven input timing windows (which allow for 211 = 2048 possible input sequences) and the

six output timing bins (which allow for 26 = 64 possible output sequences). The heuristic for

this mapping can be described as follows:

While a hit (a pulse rising above threshold voltage) should signify that a corresponding

output bin should be set to 1, this should not be the case if this voltage is merely a lingering

pulse from the previous window. It is possible, for example, to imagine a hit appearing on

a sense wire shortly before the end of a timing window. In this event, voltage will be above

threshold for both the timing window in question, as well as for the next window, which is

merely detecting the delayed after-effects of the hit.

To distinguish between these “delayed after-effects” and valid, second pulses in the neigh-

boring time bin, a “not-sure” window is defined for each output window, excepting the first

in an event. Thus, for six output windows, there are 5 not-sure windows used in the XTC2

decision algorithm. If a hit shows up in a particular input window, it will turn on the corre-

sponding output window in all cases excepting one: if the previous window also had a hit, and

only the not-sure window of the current window has a hit (and not the rest of the window). In

that case, the “hit” is considered lingering voltage from a previous window and ignored. This

functionality precisely mimics the original XTC design, which had only two output windows,

but three input timing windows. This functionality is also described in Figure 30 [44].

5.2 Diagnostic Procedures for the XTC2

A suite of testing and diagnostic software tools were developed to ensure the functionality of

the XTC2. These tests involve a complete teststand for the XTC2 which simulate hits on the
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Figure 30: Single pulses can rise above ASDQ threshold for longer than the typical timing
window, as shown in this figure. To improve the functional resolution (and thus decrease
fake rates in tracking), a “not-sure window” algorithm is implemented to identify pulses
that appear in two bins, but are due to only one track. According to the XTC and XTC2
functionality, only Bin N will turn on in the above situation as depicted [44].

detector as well as all the timing and control signals that would be found for a board in situ.

This section will discuss how these tests are used and how their results are interpreted.

Logging into a crate using SSH The teststand crate is designed to be accessible by remote

login though a hardwired ethernet connection to a local network. To join that network (thereby

getting access to the crate) requires SSH access to another machine on that network. This

secondary machine serves as a middle man for all interactions with the crate controller. In

this example, the crate is connected to the Illinois HEP network, accessible by SSH via the LX

machines.

The following commands are useful to put into a startup script for C-shell users on the LX

machines, so as to alias commonly used programs:

alias cdfsoft source ~/docdfsoft2.csh

alias crate "rlogin -l vxcdf mvme2300d.hep.uiuc.edu"

alias key "kinit ${USER}"

alias sb0 "ssh -XA ${USER}@b0doorway.fnal.gov"
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set autologout = 9999

Incorporated by reference in the above script, there is a secondary script, docdfsoft2.csh

that needs to be available in the home area if the command cdfsoft is to properly function.

The contents of that script are listed below, verbatim:

#!/bin/csh f

setenv USESHLIBS 1

source ~cdfsoft/cdf2.cshrc

setup cdfsoft2 6.1.4mc.m

#setup kai v4_0f

#setup -f Linux+2.2 -q KCC_4_0 root v2_26_01a

#srt_setup STR_QUAL=default SRT_CXX=KCC_4_0

setenv LD_LIBRARY_PATH "../shlib/Linux2-KCC_4_0:/usr/lib:$LD_LIBRARY_PATH"

setup kerberos

setup ssh

# to tell what releases are available, type

# ups list -a cdfsoft2

With these two scripts in the home area, logging in to the crate is performed with the

command crate. The login and password for the HEP Illinois crate are vxcdf and cdf347vx,

respectively.

Using pre-compiled code After logging in to the crate, the user has access to a directory

visible to the crate controller, and all the files within that directory (and its subdirectories).

This directory is also available on the Illinois windows network as \\Hep-ntweb\VxUsers\VxCDF.

Pre-compiled code exists in this directory as well as some subdirectories. In particular, the

subdirectory xtctest has programs for testing the XTC2s. Backup copies of source code are

stored in its subdirectory, code. It is important to note that to change directories on the crate

controller requires quotation marks to be specially placed around the directory name used as

an argument. For example, to change directories to find XTC2 code, a user would enter the

following command:
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cd "~/xtctest/"

Pre-compiled executables must be loaded into memory, then run using the function name

(and any relevant arguments) defined in the source code. For example, to run the diagnos-

tic program xtc comp (explained later in this section), the commands entered into the crate

controller would be the following:

ld < xtc_comp

run

In this instance, run is the function name as defined in the source code for xtc comp, which

can be found in the subdirectory, code, under the filename, xtc comp.c.

Memory management As programs are loaded into memory by the crate controller CPU,

the remaining memory can diminish, causing poor performance. To see what programs are

consuming memory at any given time on the crate, the following command is issued:

moduleShow()

Memory can be freed by unloading the program (or “module”) by issuing the command unld(),

with the specific module ID within the parentheses.

Compiling code The software libraries used to convert source code in C++ to crate controller

CPU run executables are called the Vision libraries. (Some documentation occasionally men-

tions the Fision libraries, which is a mistranslation by the developers.) These libraries allow

for the use of the Vision commands which are used to read and write to devices on the crate

at specific register addresses. A typical Vision command looks like the following:

VISIONwrite(boardHandle[tdc_slot], VMEADDRESSPREFIX + i,

sizeof(my_byte), &bytes, &my_byte);

Here, boardHandle is an array of addresses (called VISION SLAVE objects), indexed by slot

number in the crate. The argument VMEADDRESSPREFIX+i identifies the location of the register

to be written, and the remaining arguments describe the data to be written. Compiling code

that includes these commands requires the following pre-processor directive for library inclusion:
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#include <vxWorks.h>

#include "VISION.h"

To compile source code, it must be copied to a machine (such as b0doorway at fermilab)

that has permission to use the Vision preprocessor libraries. The previously aliased command

sb0 is ideal for this purpose. On this authorized machine, the following aliasing commands

should be included in the start-up shell script to facilitate compilation:

alias cpc1 "setup fision"

alias cpc2 "setup -q ppc vxworks"

alias cpc3 ’$VXCC -I${FISION_DIR}/include \!^.c’

alias cpc4 ’$VXLD -g -o \!* \!*.o’

alias cpc "cpc1; cpc2; cpc3 \!*; cpc4 \!*"

Code, such as xtc comp.c, can be compiled into an executable, such as xtc comp, as simply

as entering the following command on b0doorway (after copying the necessary files over).

cpc xtc_comp

XTC2 Tests In this section, the suite of diagnostic tests currently developed and used for

pre-deployment check-out of XTC2s is described [47]. Each test can be loaded and executed as

pre-compiled code using the steps detailed above.

regtest is a simple test of the ability to read and write to the available registers on the XTC2.

These registers are written to numerous times with varying sequences of ones and zeros

and subsequently read back. This test, along with the tests below, (within xtc comp) are

considered part of the XTC2 checkout suite. These tests should be performed first, as

xtc comp will return the XTC2 registers to a useable state.

xtc comp is the most comprehensive XTC2 testing program. The basic suite of tests used to

check out an XTC2 is available entirely in xtc comp. The normal routine to “checkout”

an XTC2 is to run the following subprocesses, listed with their Menu Option number:
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• 15) 6-Bin: Program Registers Production XTC, Standard Values... This

option configures each of the write accessible registers with their default values. An

explanation of each register is given in Section 5.3.

• 17) 6-Bin: Connectivity Test The connectivity test instructs the TDC and

XTC2 to begin sending an event of all zeros. After a few such events have been

sent, it inspects the Finders RAM, and compares it to its expectation. The Finder

expects to find all zeros, along with the correct formatting of B0 and Word0 signals.

The test repeats using all ones, all zeros, and all ones again, for a total of 4 events

worth of information being read out.

This is essentially a test of equipment between the TDC output module and the

Finder input module. No XTC2 logic is used here.

• 18) 6-Bin: Finder Capture Functionality Test The Finder Capture test is

nearly identical to the connectivity test. The most notable difference is that random

words are created in a couple of XTC2 timing windows, and the Finder RAMs are

checked to insure that those words are properly formatted. This is a good test of

XTC2 logic functionality, and channel-by-channel accuracy.

This test starts with a quick scan to determine approximately where the XTC2

timing windows are. Also, 100 events are tested, compared to only 4 events in the

connectivity test.

• 19) 6-Bin: Extended Finder Capture Functionality TestThis test is exactly

the same as the previous, with 100 times as many events tested.

• 21) 6-Bin: L2 Buffer Test New Way ... The L2 Buffer is a memory device on

the output end of the XTC2. It stores, for testing purposes, the output of the XTC2

before it is sent on toward the Finder. If the XTC2 has shown correct functionality

in the Finder Capture tests above, this can subsequently check the functionality of

the L2 Buffer by comparing what it records to what the Finder receives.

The test is run in the same way as the Finder Capture functionality tests, except

the inputs and outputs it compares are different. Instead of comparing XTC2 input
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to Finder output, it compares Finder output to XTC2 output (in the L2 buffer).

• 27) Edgetest Edgetest uses pulses from the Tracer to search, channel-by-channel,

for the timing of each edge of the XTC2 logical windows. On the input side of the

XTC2, there are 11 windows (6 output + 5 not-sure). This test scans with variable

sized pulses to find each windows beginning and end.

At the end of the test, a 12 by 96 table of timing values is displayed. Currently, there

is no failure mode of this test, but it can be used to search for anomalous behavior

on a specific channel.

ODLD (Output Data Looping Design) loads an alternate FPGA configuration into the

FlashRAM. The different configuration does not perform XTC2 functionality; instead, it

loops an output pattern. This is very useful for testing of downstream components, such

as the stereo finder or the transition boards on the backplane.

xtc kill is now, essentially, an obsolete diagnostic tool. In a previous CPLD design, there

were rare cases where an XTC2 would “die” while the FPGAs were being configured. The

only remedy at the time was to reprogram the CPLDs. To help diagnose this problem,

xtc kill was built to repeatedly configure the FPGAs 5000 times an hour. The most

recent version of the CPLD software (“v16”) does not exhibit this issue.

5.3 Memory Map of the XTC2

An understanding of the functionality of each of the registers, as well as the general outline of

the register space, on-board the XTC2 is critical for diagnosing issues on an individual board.

To this end, a complete mapping of the registers on the XTC2 is given in Table 7 [48].
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Table 7: XTC 2 Production Board Register Space Summary: Covering the CPLD registers ( XTC2: x38-x3F ) and the
FPGA registers on the XTC2 [48].

Address
R/W

First Version Init. Value
Function

VME XTC 2-Bin 6-Bin CPLD 2-Bin 6-Bin

xFC (x3F) R/W — — 16 x00
Addr2 (flash address bits 18:16;

only bits 2:0 of register are used)

xF8 (x3E) R/W — — 16 x00 Addr1 (flash address bits 15:8)

xF4 (x3D) R/W — — 16 x00 Addr0 (flash address bits 7:0)

xF0 (x3C) R/W — — 16 x00

Flash Data Byte

(data = byte to write when writing;

data = byte read from flash when reading)

xEC (x3B) W — — 16 N/A Command Register.

xE8 (x3A) R — — 16 Varies Read CPLD/Flash Status

xE4 (x39) W — — 1 N/A
Reset FPGA Prog CPLD logic

(any data value may be written)

xE0 (x38) R — — 1 Ver. # FPGA Prog CPLD Firmwave Version Number
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Table 7: (cont.)

xDC (x37

— — — — — — UNUSED– –

xB0 x2C)

xAC (x2B) W — 32 — N/A x00
Write Byte to ODLD Buffer

(data = byte to be written)

xA8 (x2A) R — 32 — N/A x00 ODLD Buffer Byte

xA4 (x29) R/W — 32 — N/A x00
ODLD Memory Address Bits 9:8

(in bits 1:0 of register)

xA0 (x28) R/W — 32 — N/A x00
ODLD Memory Address Bits 7:0

(in bits 7:0 of register)

x9C (x27) R/W — 32 — N/A x03
Clk132 Shift/Shift In Bit Clock Count

(Range: x00-x0E)

x98 (x26) R/W — 32 — N/A x07 ODLD Clk22 Delay (Range: x00-x1F)

x94 (x25) R/W — 32 — N/A x05 BRAM Clk22 Delay (Range: x00-x1F)

x90 (x24) R/W — 32 — N/A x15 BRAM Clk132 Delay (Range: x00-x1F)
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Table 7: (cont.)

x8C (x23) R/W — 32 — N/A x00
Clock Delay Register Lock

(xFE = not locked, Else = locked)

x88 (x22) R/W — 32 — N/A x00

KS Test Mode

(x00 = alternating ones and zeros,

Else = ODLD)

x84 (x21) R/W — 23 — N/A x00 Transition Board Mode (Range: 0-3)

x80 (x20) R/W — 16 — N/A xFF
Not-Sure Window Enable

(x00 = disable, Else = enable)

x7C (x1F) R/W 17 17 — xFF xFF
Shift In Bit Enable

(x00 = disable [enable test mode], Else = enable)

x78 (x1E) R/W 16 16 — x00 x00
Transition Board FPGA Reprogram Signal

(x00 = high, Else = low)

x74 (x1D) R 16 16 — x02 x06 Number of Time Bins in Design (= 2 or 6)

x70 (x1C) R 16 16 — Ser. # Ser. #
Board Serial Number (high serial

number bit in the lsb of the register)
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Table 7: (cont.)

x6C (x1B) R 16 16 — Ser. # Ser. # Board Serial Number (low 8 bits)

x68 (x1A) R/W — 16 — N/A x0A Not-Sure Window 5 Width (Range: x00-x0F)

x64 (x19) R/W — 16 — N/A x0A Not-Sure Window 4 Width (Range: x00-x0F)

x60 (x18) R/W — 16 — N/A x0C Not-Sure Window 3 Width (Range: x00-x0F)

x5C (x17) R/W — 16 — N/A x0A Not-Sure Window 2 Width (Range: x00-x0F)

x58 (x16) R/W — 16 — N/A x0C Not-Sure Window 1 Width (Range: x00-x0F)

x54 (x15) R 16 16 — Ver. # Ver. # Kitchen Sink FPGA Firmware Version Number

x50 (x14) R 16 16 — Ver. # Ver. # Data FPGA Firmware Version Number

x4C (x13) R 19 19 — x00 x00 Buffer 3 Content Bits (bits 5:0)

x48 (x12) R 19 19 — x00 x00 Buffer 2 Content Bits (bits 5:0)

x44 (x11) R 19 19 — x00 x00 Buffer 1 Content Bits (bits 5:0)

x40 (x10) R 19 19 — x00 x00 Buffer 0 Content Bits (bits 5:0)

6
0



Table 7: (cont.)

x3C (x0F) R 16 16 — x00 x00
Read Buffer Byte (Automatically

triggers read of next address)

x38 (x0E) W 16 16 — x00 x00
Buffer Byte Address (Range: 0-72)

(Automatically triggers read)

x34 (x0D) W 16 16 — x00 x00 Buffer Number (Range: 0-3)

x30 (x0C) W 16 16 — x03 x29
Level 1 Accept Delay Value

(in CDFCLK periods)

x2C (x0B) R/W 16 16 — x00 x14
Clock 5 Delay (DELCLK[5]) (U13)

(0.5ns/step) (LE L)

x28 (x0A) R/W 16 16 — x00 x15
Clock 4 Delay (DELCLK[4]) (U12)

(0.5ns/step) (LE K)

x24 (x09) R/W 16 16 — x00 x12
Clock 3 Delay (DELCLK[3]) (U17)

(0.5ns/step) (LE J)

x20 (x08) R/W 16 16 — x7F x87
Delayed Set/Clear Delay (U15)

**(2ns/step) (LE I)
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Table 7: (cont.)

x1C (x07) R/W 16 16 — xBC x00
Prompt Set/Clear Delay (U16)

(0.5ns/step) (LE H)

x18 (x06) R/W 16 16 — x70 x10
Clock 2 Delay (DELCLK[2]) (U14)

(0.5ns/step) (LE G)

x14 (x05) R/W 16 16 — x62 x58
Clock 1 Delay (DELCLK[1]) (U19)

(0.5ns/step) (LE F)

x10 (x04) R/W 16 16 — x06 x03
CDFB0 Delay (U18)

**(5ns/step) (LE E)

x0C (x03) R — 25 — N/A xF1 Board ID Register

x08 (x02) R/W 16 16 — xC8 xC8 PLL Input Delay (U11) (0.5ns/step) (LE C)

x04 (x01) R/W 16 16 — x06 x03 CDFBC Delay (U20) **(5ns/step) (LE B)

x00 (x00) R/W 16 16 — x5C x4A
Initial CDFCLK Delay (U21)

(0.5ns/step) (LE A)
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5.4 Stereo Finders

The role of the Finder, simply stated, is to identify valid track segments in a given COT super-

layer. The Stereo Finders, installed during the XFT Upgrade, perform this same function

in connection with the stereo super-layers of the COT. After the XTC2 has completed its

digitization of the time information for pulses in the COT, the information is given to TDC

Transition Modules which performs multiplexing and transmission via optical fiber. Passed

forward via the optical fibers, the Stereo Finders receive this information and begin their own

track segment identification.

Because the Stereo Finders are instrumented upon stereo super-layers, the track paths they

find will necessarily appear displaced in φ from their actual location. This displacement will be

a function approximately linear in the z value of the track. The SLAM (discussed below) can

capitalize upon that correlation. A diagram showing how pixels from a track passing through a

stereo super-layer can appear displaced in φ due to their location in z is shown in Figure 31 [44].

Figure 31: Pixel Displacement of Hits on Stereo COT Super-layers: A diagram
representing the pixel displacement that will occur for tracks passing through stereo super-
layers with non-zero z values. Importantly, the pixel displacement alternates directions from
one stereo super-layer to the next [44].
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5.5 SLAM

The Stereo Linker Association Module (SLAM) is capable of capitalizing upon the correlation

between COT pixel displacement in φ with the associated track displacement in z (which is

due to stereo super-layer sense wires not being precisely parallel to the collision axis). No-

tably, stereo super-layers alternate their direction of rotation away from the beamline axis (as

described in more detail in Section 3.4.1). Thus, pixel displacement between adjacent stereo

super-layers, such as SL5 and SL7, should be anti-correlated for real tracks. A simulation of real

tracks shows this in the upper plot of Figure 32 [44]. Simulations of fake tracks show a complete

lack of this correlation, providing a handle to the SLAM for fake rejection by comparing the

pixel displacement for these tracks in the stereo super-layers.

Within the original, axial-based Level 1 XFT Trigger system, individual Finders have access

to only local information in a geometric sense. That is to say, information corresponding to

pixels on one side of the detector is not provided to Finders instrumented on the other side.

While this holds true for the Stereo Finders installed in the XFT Upgrade, the domain of

Finders which need to be linked in order to identify a full track is necessarily larger, due to

the alternating direction of stereo rotation of the COT sense wires. Therefore, any individual

SLAM board collects information from three different Stereo Finders in order to identify all

possible tracks of interest [45].

Before the upgrade, information was sent from the Linker (part of the axial XFT Trigger

path), to the XTRP, via a simple pass-through board, the Linker Output Module (LOM). The

LOM was the only board replaced in the XFT system during the upgrade. The SLAM took

its place, and thus has access to all the necessary stereo and axial information to perform fake

track rejection. The upgraded system is represented in Figure 29 [43].

Since the upgrade, the Level 1 Trigger has been able to maintain a healthy accept rate

despite growing instantaneous luminosity. Evidence of this is shown in Figure 33, where cross

sections for a typical Level 2 Trigger path are shown before and after the XFT upgrade as a

function of rising instantaneous luminosity [43]. As the higher luminosities, the inclusion of the

stereo confirmation of tracks at Level 1 plays a vital role in maintaining trigger rates.
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Figure 32: Anti-Correlation of Pixel Displacement Between Adjacent Stereo
Super-layers (Simulation): Simulations show that real tracks will exhibit (negative) cor-
relations of pixel displacement between stereo super-layers. This is represented in the above
temperature histogram. Fake tracks, however, will show no such correlation, as is shown
in the lower temperature histogram. Thus, Stereo Finders can capitalize on this expected
correlation to improve fake track rejection at Level 1 [44].

65



Figure 33: A typical Level 2 Trigger path has a cross section (black) that becomes un-
manageable at higher instantaneous luminosities. After applying the XFT upgrade, bringing
stereo confirmation to the Level 1 Trigger, the cross section (blue) continues to be manageable
at very high luminosities [43].
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6 Monte Carlo Used in This Analysis

The Monte Carlo samples generated for this analysis used software release 6.1.4 and 6.1.4mc.m,

the Scientific Linux 4 and Scientific Linux 5 versions of cdfsoft code, respectively. Simulations

of bb̄ production events, and the resulting decay of a B meson are performed using EvtGen.

EvtGen is a Monte Carlo simulation specifically tuned to physics of B hadron decays, with a

capability of handling CP violation in decays [50].

Detector effects are simulated in the Monte Carlo using standard CDF executables, includ-

ing cdfSim, TRGSim++, and ProductionExe. The directory structure is further developed in

accordance with the CDF B Group prescription [51]. Specifics of the three Monte Carlo sets

used as part of this analysis are found in Table 8. To compare these Monte Carlo samples,

plots are made using the selection criteria explained in Chapters 10 and 11. These plots, shown

in Figures 34 through 40 demonstrate which aspects of the Monte Carlo samples vary, and the

extent to which they accurately model data.

Monte Carlo Simulation Description

Prompt B0
s

B0
s → J/ψ φ

B0
s is prompt and constrained to decay directly to J/ψ φ

Fragmentation tracks are excluded (B-Generator)

Scenario I B+
c

B+
c → B0

s π
+, B0

s → J/ψ φ
B+

c is constrained to decay directly to B0
s π

+.
B0

s is constrained to decay directly to J/ψ φ
Fragmentation tracks are excluded (B-Generator)
B+

c is produced with a likely estimate of pT spectrum

Scenario II B+
c

B+
c → B0

sπ
+, B0

s → J/ψ φ
B+

c is constrained to decay directly to B0
sπ

+.
B0

s is constrained to decay directly to J/ψ φ
Fragmentation tracks are excluded (B-Generator)
B+

c is produced with pT spectrum matching the Prompt B0
s

Table 8: Descriptions of the three Monte Carlo samples developed for this analysis. The
Scenario I B+

c and Scenario II B+
c differ, primarily, in the pT spectrum of the B+

c , as demon-
strated in Figure 34. The Prompt B0

s sample accurately models the B0
s+track background

to this search, as shown in Figures 38 through 40.

In Figures 34 through 37, each of the three Monte Carlo samples described in Table 8 is

compared. Figure 34 applies the pre-selections for the B+
c neural network to these samples (as
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c
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c (red). Each distribution is normalized

to unit area.
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Figure 35: B0
s kinematic quantities as simulated for the CDF II detector, after applying

B0
s neural network selection as described in Chapter 10. The three Monte Carlo distribu-

tions shown are Scenario I B+
c (green), Scenario II B+

c (red), and Prompt B0
s (blue). Each

distribution is normalized to unit area.
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Figure 36: φ kinematic quantities as simulated for the CDF II detector, after applying
B0

s neural network selection as described in Chapter 10. The three Monte Carlo distribu-
tions shown are Scenario I B+

c (green), Scenario II B+
c (red), and Prompt B0

s (blue). Each
distribution is normalized to unit area.
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Figure 37: J/ψ kinematic quantities as simulated for the CDF II detector, after applying
B0

s neural network selection as described in Chapter 10. The three Monte Carlo distribu-
tions shown are Scenario I B+

c (green), Scenario II B+
c (red), and Prompt B0

s (blue). Each
distribution is normalized to unit area.
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Figure 38: A comparison of kinematic quantities of the B0
s for Prompt Bs Monte Carlo

(blue) versus sideband subtracted data (black) after applying B0
s neural network selection as

described in Chapter 10. Data from the B0
s mass sideband (shown here with dashed red lines

in the B0
s mass plot) is subtracted off from the other kinematic distributions to cancel the

contribution from combinatoric background. All distributions are normalized to unit area.
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Figure 39: A comparison of kinematic quantities of the φ meson for Prompt Bs Monte Carlo
(blue) versus sideband subtracted data (black) after applying B0

s neural network selection as
described in Chapter 10. Data from the B0

s mass sideband (shown in Figure 38 with dashed
red lines in the B0

s mass plot) is subtracted off from the other kinematic distributions to
cancel the contribution from combinatoric background. All distributions are normalized to
unit area.
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Figure 40: A comparison of kinematic quantities of the J/ψ meson for
Prompt Bs Monte Carlo (blue) versus sideband subtracted data (black) after applying B0

s

neural network selection as described in Chapter 10. Data from the B0
s mass sideband

(shown in Figure 38 with dashed red lines in the B0
s mass plot) is subtracted off from the

other kinematic distributions to cancel the contribution from combinatoric background. All
distributions are normalized to unit area.
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described later, in Chapter 11), and compares the resulting kinematics of the B+
c . (Naturally,

the Prompt B0
s sample is excluded from this collection of plots.) Similarly, Figures 35 through

37 show the various kinematics properties of the B0
s , φ, and J/ψ mesons after applying the B0

s

neural network selection criteria as described in Chapter 10.

Most notably, in Figure 34, the difference in the pT spectrum of the B+
c between the

Scenario I and Scenario II B+
c samples is evident. This is by construction, as the two samples

are generated with differing hypotheses for the pT spectrum of the B+
c . The spectrum for

Scenario I B+
c Monte Carlo is built using information from perturbative QCD models of B+

c

production in hadron collisions [52, 53]. On the other hand, the spectrum for Scenario II B+
c

Monte Carlo posits a B+
c with a harder spectrum, equivalent to that of the pT spectrum of the

B0
s in Prompt B0

s decays.

The harder pT spectrum of B0
s candidates from Prompt B0

s decays is also evident in Fig-

ure 38. The softer B0
s spectrum for candidates produced by B+

c → B0
s π

+ decay is explained

in Section 2.3.4.

Figures 38 through 40 demonstrate how data is well-modeled by the Prompt B0
s Monte

Carlo sample. Both samples have the B0
s neural network selection cuts applied, as described

in Chapter 10. To reduce the contribution from combinatoric B0
s background, sideband sub-

traction (using the B0
s mass sidebands) is applied to each plot (other than the B0

s mass plot

itself). The sidebands to B0
s , for the purposes of Figures 38 through 40, are the events with B0

s

outside a 50 MeV/c2 wide window. This window is shown in Figure 38 using dashed red lines.

After applying this sideband subtraction, the kinematic distributions for every other variable

in data is well-modeled by the Monte Carlo.

6.1 Polarization in B0
s

Decays

Polarization of the B0
s is not expected to play a significant role in this analysis, as the method

described in Section 2.3.3 allows for a cancelation of any effects confined to the B0
s decay. In

light of this, each of the Monte Carlo samples produced has a roughly identical polarization

spectrum for the B0
s , which is based upon experimental results.
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7 Technical Aspects of the Analysis Specific to CDF II

Some aspects of this analysis are designed around the particular methodologies of data-handling

found at CDF II. Separate from the larger physics context of this analysis, these details are

collected in this chapter. The particulars involved do not affect the final results, but play a

critical role in accelerating the selection of candidates from large backgrounds.

7.1 Tools Available to Search for B0
s

Events

The trigger system at CDF is a powerful tool in searching for B0
s events within our data.

This analysis will capitalize on the success of the J/ψ Trigger in order search for the fully

reconstructed B0
s → J/ψ φ decay mode. Details of how the trigger selects events to be recorded

are discussed in Chapter 4.

As a by-product of the B0
s mixing analysis, CDF has numerous other tools at its disposal

to aid in a search for B0
s candidates within its data. The creation of the B-Stntuple has

dramatically increased the speed of searching for B0
s meson by extracting only the relevant

data from a a full event in data. In addition, the likelihood of error has been reduced by the

implementation of B-Stntuple, as a standardized data format can be used across numerous

analyses.

Since the first B0
s mixing analysis was published, measured yields have dramatically in-

creased due to the development of artificial neural networks trained to search for B0
s decays.

Details of the functioning of artificial neural networks are discussed generally in Appendix A,

and briefly in Chapter 8. Specifics regarding the neural networks trained to search for B0
s

decays are discussed in Chapter 9.

7.2 Overcoming the Limitations to a B+
c

→ B0
s
π+ Analysis

Though currently existing tools allow for a relatively straight-forward search for B0
s candidates

in the data, there are limitations that hinder the search for B+
c → B0

s π+ decays. First and

foremost, the B-Stntuple structure, by default, does not have enough information to construct

a B+
c → B0

s π
+ vertex. As a result, the pre-existing, cataloged B-Stntuples can only be used
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in a limited way, and full events in data must be reprocessed to include a B+
c → B0

s π+

vertex. By applying different settings in the TCL parameters of the B-Stntuple executable,

the B+
c → B0

s π
+ vertex is generated while reprocessing full events in data. The specific TCL

settings are detailed in Appendix B.

7.2.1 B0
s Skimming Requirements

Because the cataloged, standard B-Stntuples are not the primary source of data in this analysis;

custom B-Stntuples that include a B+
c → B0

s π
+ vertex must be generated from the full events

in compressed production output data. To expedite this process, however, the B0
s candidates of

the cataloged B-Stntuples are reviewed to build a run and event list. This list is then used to

skim over the compressed production output, building a vertex only in events in which quality

B0
s candidates seem likely.

The cuts on neural network score of the B0
s applied before building the run and event list are

shown in Table 9. In addition, these neural network score requirements imply the application

of selection requirements described in Table 11. Each entry in Table 9 shows the minimum

neural network score required by a candidate for the event to be included in the run and event

list.

B0
s → J/ψ φ

0d ≥ −0.999
0h ≥ −0.999
0i ≥ −0.999
0j ≥ −0.999
0k ≥ −0.999
0m ≥ −0.999

Table 9: Neural network score requirements imposed during run-event list skimming of
cataloged B-Stntuples.

7.2.2 Prompt B0
s Bias in B0

s Neural Networks

A second limitation is that the neural networks currently trained to select B0
s candidates tend

to be biased toward prompt B0
s candidates. To the extent that these neural networks are used
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to eliminate combinatorial background during a B+
c → B0

s π
+ search, effort must be made to

understand and, where possible, eliminate bias toward prompt B0
s candidates. Much of this

effort is discussed in Chapter 9.

B0
s → J/ψ φ neural network is used without PID. Because Monte Carlo simulation of

particle identification is not well-modeled, this analysis will refrain from using particle iden-

tification as a means of validating candidates. To this end, the B0
s neural networks will not

use particle ID information for kaons in B0
s → J/ψ φ decays. This means that B0

s candidates

will be scored using “version 2” of the neural network expert file for that mode. This does not

dramatically affect the purity of the signal sample, which is shown in Chapter 10.
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8 Artificial Neural Networks

From a mathematical standpoint, this analysis is a binary classification problem – deciding

whether any given event in data, after some selection criteria are imposed, is a B+
c → B0

s π
+

decay. Artificial neural networks, and in particular, feed forward neural networks, are an

effective technique in approaching this classification problem. This section will briefly describe

their usage in this analysis. A more careful discussion of the theory of artificial neural networks

is found in Appendix A.

8.1 Neural Network Input

8.1.1 Pre-selection cuts on variables

Any time a neural network is used to select signal candidates from a mixture of possible signal

and background, carefully constructed training samples must be created. It is in the best

interest of the analysis to perform a basic set of single variable selection cuts before creating

these samples or scoring candidates. (These single variable cuts, which depend only on one

parameter, and are thus 1-dimensional in their approach to selection, are named “rectangular”

cuts, due to the shape these cuts impose when constraining the phase-space of variables.) As

such, each neural network in this analysis is accompanied by an associated set of “rectangular”

pre-selection cuts to speed training and improve scoring.

8.1.2 Training

The training of the neural network is at the heart of the neural network technique. For each

variable provided during training, the distribution of signal and background is fitted with a

spline fit. Certain pre-processing directives can be used to request special constraints, such as

monotonic fits or Dirac δ functions. Any variable that cannot significantly contribute to the

classification of candidates is eliminated from the decision process.

The remaining variables after the initial pruning may still have some correlations among

them. The next step in the training is to decorrelate the variables by rotating the covariance

matrix to the identity. The final step in training a neural network classifier (or “expert”) is
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to regularize the classification functions (reducing the effect of fluctuations within the training

samples) and to reduce the number of free parameters as possible to improve the dilution.

All of this is training is performed using the Neurobayes R© analysis software, which can take

in structured collections of event information (called “flat ntuples”) and perform the rotations,

decorrelations, and spline fits on an arbitrary number of variables within the collection. This

is discussed in more detail in Appendix A.

8.2 Neural Network Output

8.2.1 Interpretation of a neural network score

For binary classification problems, it is often the case (as in this analysis) that for each candidate

evaluated a neural network, once trained, will output a score ranging between −1.0 and 1.0,

inclusive. Higher scores indicate a higher probability of signal-like candidates over background-

like candidates. Scores are distributed based on the monotonic sigmoid function, which is

discussed in more depth in Appendix A. Suffice it to say that, once candidates are scored, a cut

can be placed on the neural network score itself to select a group of likely signal candidates.

8.2.2 Auditing for bias in neural network score

Measurement of signal content within a sample of data that includes both signal and background

is done by measuring yield in a discriminating variable. The discriminating variable, in this

sense, is the key to the user’s ability to optimize a cut on neural network score.

It is crucial, then, to avoid bias by insuring that any neural network used to distinguish signal

from background not have information correlated to this discriminating variable. Otherwise, a

cut on neural network score will introduce bias in the discriminating variable, invalidating any

attempt to measure signal over background. It can be useful, then, to look in the sidebands of

this parameter to check for any neural network score dependence. This technique is performed

for the B+
c neural network used in this analysis, as can be seen in Section 11.5.
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9 B0
s Neural Networks

This analysis searches within one fully reconstructed B0
s decay channel with no partially re-

constructed modes of decay. The decay sequence, B0
s → J/ψ φ, J/ψ → µ+µ−, φ → K+K−,

includes four charged tracks in the final state of the B0
s decay. In previous analyses, selection of

B0
s candidates against a combinatoric background has been optimized using neural networks.

As a result, this analysis has a custom B0
s neural network that can be implemented to help in

searching for B0
s decays. This section will discuss some of the details of this neural network, as

it will be used to assist in the search for B+
c → B0

s π
+ decays.

9.1 Variable Definitions

Numerous variables are used to train and score the B0
s neural network in this analysis. In

Table 10, each variable is defined.

9.2 Pre-Selection Variables

Section 8.1.1 noted that pre-selection requirements are necessary when training or implementing

a neural network. Table 11 gives these requirements for the neural network expert that will

evaluate the B0
s decay. The result of this evaluation, the B0

s neural network score, will be

used later as an input to the B+
c neural network expert, which will have its own preselection

requirements.

9.3 Selection Variables

Table 12 presents the variables used to train and score B0
s → J/ψ φ decay candidates.

9.4 Avoiding Adverse Bias from B0
s

Neural Networks

It is the sole aim of the B0
s neural network to select a maximal number of B0

s candidates in

a sample while suppressing a combinatoric background. Thus, there is no assurance, a priori,

that the output of the B0
s neural network will not be biased against B+

c → B0
s π

+ candidates

(in favor of prompt B0
s). For example, a B+

c → B0
sπ

+ event may be scored poorly by the
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Variable Definition

χ2
rφ(Bs) The error (χ2) found when fitting the Bs vertex from its collection

of daughter tracks, using only information in the r − φ plane

pT (Bs) The transverse momentum of the Bs candidate

Prob(Bs) The probability of the Bs vertex, as computed using the χ2
rφ(Bs)

pT (φ) The transverse momentum of the φ meson daughter

Prob(φ) The probability of the φ meson vertex fit

|∆m(K+K−, φ)| The absolute difference in mass of the reconstructed (uncon-
strained) mass of the φ and the PDG value of the φ mass

pT (K1) The transverse momentum of the first kaon daughter

pT (K2) The transverse momentum of the second kaon daughter

pT (J/ψ) The transverse momentum of the J/ψ meson daughter

Prob(J/ψ) The probability of the J/ψ meson vertex fit

|∆m (µ+µ−, J/ψ)| The absolute difference in mass of the reconstructed (uncon-
strained) mass of the J/ψ and the PDG value of the J/ψ mass

µ likelihood The output of the muon likelihood function, an estimate of the
probability that a muon is real given track-stub matching quanti-
ties and calorimetry information, for the muon daughters [54]

pT (µ) The transverse momentum of the muon daughters

Table 10: Variables used in B0
s selection and their definitions. Each variable listed used

during selection or pre-selection is defined here. The distinction of when each variable is used
is made in Tables 11 and 12.
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Pre-Selection Requirement Bs → J/ψ φ
χ2

rφ(Bs) < 50

pT (Bs) [GeV/c] > 4.0
pT (φ) [GeV/c] > 1.0
pT (K) [GeV/c] > 0.4

|∆m(K+K−, φ)| [GeV/c2] < 0.01
|∆m(µ+µ−, J/ψ)| [GeV/c2] < 0.05

Table 11: Pre-Selection Requirements – B0
s → J/ψ φ If a B0

s candidate fails to pass
any of the above cuts, the B0

s neural network score will default to −1.0, the lowest possible
value.

B0
s → J/ψ φ, J/ψ → µ+µ−, φ→ K+K−

χ2
rφ(Bs)

pT (Bs)
Prob(Bs)
pT (φ)

Prob(φ)
|∆m(K+K−, φ)|

pT (K1)
pT (K2)
pT (J/ψ)

Prob(J/ψ)
|∆m (µ+µ−, J/ψ)|
µ1 likelihood
µ2 likelihood

pT (µ1)
pT (µ2)

Table 12: Training and scoring variables for the B0
s → J/ψ φ neural network expert. The

definition of µ1 and µ2 is arbitrary.
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B0
s neural network if the kinematic properties of the B0

s are statistically less attractive to the

neural network than those properties of a B0
s produced promptly.

In particular, the role of pT (B0
s) in pre-selection and scoring merits attention. While this

variable will be used in the training and scoring of the B+
c neural network expert, the extent

to which a negative correlation is found between B0
s neural network score and pT (B0

s ) itself

should be understood from the outset.

9.4.1 pT (B0
s) distribution for B+

c → B0
s π+ vs. prompt B0

s

A review of pre-selection criteria for the B0
s neural network (see Table 11) shows that selec-

tion criteria require pT ≥ 4.0 GeV/c – a reasonable cut considering the challenge of selecting

against combinatoric candidates, that has also been shown in previous analyses to be efficient

in discriminating signal and background.

pT bias in B0
s neural networks is adverse. In order to improve their yield of B0

s candidates

above combinatoric background, neural networks prefer selecting B0
s candidates with higher pT .

However, as described in Section 2.3.4, the B+
c is expected to have a softer production spectrum

than prompt B0
s candidates. This leads to softer B0

s candidates in B+
c → B0

s π
+ signal events

than in the prompt B0
s background, hurting the overall acceptance of B+

c → B0
s π

+ candidates

when using the B0
s neural network.

Figure 41 shows direct evidence that the acceptance of a B0
s neural network increases as

a function of pT of the parent hadron in an event, using generator level (Scenario I B+
c and

Prompt B0
s) Monte Carlo. This adverse bias toward prompt B0

s candidates is unavoidable,

though not necessarily problematic. Figure 42 shows that, for high values of parent hadron pT ,

candidates are treated almost identically by the B0
s neural network cut, regardless of whether

the event was prompt B0
s or a B+

c → B0
s π+ decay. At low values of parent hadron pT , the

expected adverse bias that is demonstrated is shown to be acceptable, given the strength of the

B0
s neural network in eliminating combinatoric candidates. In the end, the total effect of this

bias shows up in the relative acceptance calculations used to quantify final measurement.
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Figure 41: Monte carlo simulation of B+
c →B0

s π
+ candidates and promptB0

s candidates are
used to study the effect of B0

s neural network cuts on pT distributions of the parent b-hadrons.
left: pT of parent hadron candidates (prompt B0

s above and Scenario I B+
c below – further

description of these Monte Carlo simulations are found in Chapter 6) increases as increasing
cuts on B0

s neural network score are applied. pT value is as listed at Generator Level. Loose
pT and η requirements are applied to all candidates to simulate detector acceptance. right:
Taking the ratios of the distributions at left (using the largest as the denominator), shows
that acceptance for B0

s neural network score cut increases as a function of pT for the parent
hadron.
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Figure 42: At high values of parent hadron pT , B0
s neural network cuts have about equal

acceptance values, regardless of whether the event was prompt B0
s or a B+

c → B0
sπ

+ decay.
This is demonstrated when overlaying the acceptance plots from Figure 41. For low values
of parent hadron pT , a bias toward prompt B0

s in acceptance is inevitable, but shown to be
small enough to be considered acceptable.
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10 B0
s Skims and Yields in Custom B-Stntuples

In this chapter, the B0
s yields within our custom B-Stntuples is computed. To maintain con-

sistency with previous B0
s searches, we optimize our yield using the B0

s neural network score

as the primary selection mechanism. In addition, the fitted value of S√
S+B

is optimized for

each mode. This is a direct measure of the number of B0
s candidates used in the search for

B+
c → B0

s π
+, as this will be used as a requirement in the final event selection.

Concerning the fitted value of S√
S+B

that is used to optimize the following yields, S and B

are defined from a fit made to the mass distribution. S is defined as the integral of the gaussian

of the fit, while B is the integral of the underlying exponential background in a range of ±2σ

of the gaussian peak.

B0
s → J/ψ φ

NN Cut 0.44
B0

s yield 5, 574 ± 97

Table 13: Selection of the final collection of B0
s candidates is performed by optimizing the

B0
s neural network score (as a function of S√

S+B
). The yield (over 5.84 fb−1) is listed here,

along with the optimized B0
s neural network score cut. A plot of the fitted yield, as well as a

break-down of yield by period, is found in Figures 43(a) & (b). The yields appear compatible
to that achieved in other analyses.
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Figure 43: After optimization on S√
S+B

, the B0
s neural network cut is set at ≥ 0.44.

The resulting yield is shown to be over 5500 B0
s candidates in the B0

s → J/ψ φ, J/ψ →
µ+µ−, φ→ K+K− mode. Estimated cross-section is shown on a period-by-period basis.
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11 Training B+
c Neural Networks

11.1 Variable Definitions

Numerous variables are used to train and score the B+
c neural network in this analysis. In

Table 14, each variable is defined. The definition provided for “d0(Track) signed w.r.t B0
s” is

further clarified as a diagram in Figure 44.

Table 14: Variables used in B0
c selection and their definitions.

Variable Definition

pT (B+
c ) The transverse momentum of the B+

c candidate

Lxy(B
+
c ) The displacement between the primary vertex and the decay point

of the B+
c , after projection onto the r − φ plane

σLxy
(B+

c ) The error on the Lxy of the B+
c

Prob(B+
c ) The probability of the B+

c vertex, as computed using the χ2
rφ(B+

c )

χ2
rφ(B+

c ) The error (χ2) found when fitting the B+
c vertex from its collection

of daughter tracks, using only information in the r − φ plane

|d0(B
+
c )| The impact parameter (extrapolated distance of closest approach

to the primary vertex) of the B+
c meson
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Table 14: (cont.)

Prob(B0
s) The probability of the Bs vertex, as computed using the χ2

rφ(Bs)

χ2
rφ(B0

s ) The error (χ2) found when fitting the Bs vertex from its collection

of daughter tracks, using only information in the r − φ plane

|d0(B
0
s )| The impact parameter (extrapolated distance of closest approach

to the primary vertex) of the Bs meson

σd0(B
0
s ) The error on the Bs impact parameter

NN Score(B0
s) The neural network score output by the B0

s neural network, as

described in Chapter 9

|mass(B0
s) − 5.366 GeV/c2| The difference between the reconstructed (unconstrained) mass of

the Bs and the PDG value

Lxy(B
0
s ) The displacement between the decay point of the Bc and the decay

point of the Bs, after projection onto the r − φ plane

σLxy
(B0

s ) The error on the Lxy of the Bs
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Table 14: (cont.)

pT (Track) The transverse momentum of the B+
c daughter track

|d0(Track)| The impact parameter of the B+
c daughter track

d0(Track) w.r.t B0
s The impact parameter of the B+

c daughter track, as measured

with respect to the B+
c decay point, (ie. the Bs creation point)

σd0(Track) The error on the impact parameter of the B+
c daughter track

d0(Track) signed w.r.t B0
s The impact parameter of the B+

c daughter track, signed according

to the geometry of the decay. (See Figure 44)

∆z0(Track,B0
s) The distance along the beamline axis between the origin of the

B+
c daughter track and the Bs meson

11.2 Pre-selection of B+
c

→ B0
s
π+ Candidates

As described in Section 8.1.1, the pre-selection of candidates is necessary for the proper training

of (and later scoring by) the B+
c neural network. Each of the training variables was examined

for potential pre-selections that could expedite training of the B+
c neural networks. The selected

cuts are shown in Table 15.

11.3 Training and Scoring Variables

Before training the B+
c , it is worthwhile to examine the kinematic distributions of the input

training variables, as well as of the ∆m distribution (as defined in Section 2.3.3) of candidates

from both signal and background. Though the B+
c neural network will certainly make use of
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Figure 44: The variable d0 when signed with respect to the B0
s , remains a direct measure

of the distance of closest approach to the primary vertex for a track. However, the sign is
set to provide information about the angular configuration of the track with respect to the
B0

s – tracks pointing in agreement with a B+
c hypothesis are signed positive, while others

negative, as shown.

Variable
Pre-selection Requirement for

J/ψ Trigger candidates
B0

s NN score ≥ 0.0
Lxy(B

0
s ) ≥ 0.0005 cm

Prob(B+
c ) ≥ 1 × 10−5

pT (B+
c ) ≥ 5.5 GeV/c

pT (Track) ≥ 0.4 GeV/c
∆z0(Track) ≤ 1.2 cm

d0(Track) signed w.r.t B0
s ≥ −0.01 cm

m(B0
s ) (upper-bound) ≤ 5.406 GeV/c2

m(B0
s ) (lower-bound) ≥ 5.326 GeV/c2

# silicon hits(B0
s tracks) ≥ 3

# axial COT hits (Kaons) ≥ 10
# stereo COT hits (Kaons) ≥ 10

# silicon hits(B+
c track) ≥ 3

# axial COT hits(B+
c track) ≥ 10

# stereo COT hits(B+
c track) ≥ 10

Table 15: Pre-selection requirements (imposed on top of skimming requirements) before
training and scoring with the B+

c → B0
s π

+ neural network.
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knowledge of the training variable distributions independent from one another (particularly

when one variable has a distinct distribution between signal and background), variables with

very similar distributions can also be considered valuable. Specifically, correlations can be

discerned among multiple variables that might not be visible in a one dimensional histogram.

Nevertheless, evaluating these one dimensional histograms can be a useful check on the health

of the training data for the neural network. The one dimensional histograms are shown in

Figures 45 through 50, and in Figure 51.
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Figure 45: Variables, as described in Table 14, used in the training of theB+
c neural network.

The distribution of the two training samples are shown – signal is red while background is
black.

Upon training the B+
c neural network, the NeuroBayes R© software package will create addi-
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Figure 46: Variables, as described in Table 14, used in the training of theB+
c neural network.

The distribution of the two training samples are shown – signal is red while background is
black.
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Figure 47: Variables, as described in Table 14, used in the training of theB+
c neural network.

The distribution of the two training samples are shown – signal is red while background is
black.
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Figure 48: Variables, as described in Table 14, used in the training of theB+
c neural network.

The distribution of the two training samples are shown – signal is red while background is
black.
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Figure 49: Variables, as described in Table 14, used in the training of theB+
c neural network.

The distribution of the two training samples are shown – signal is red while background is
black.
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Figure 50: The last variable used in the training of the B+
c neural network. The distribution

of the two training samples are shown – signal is red while background is black.

tional plots of signal and background efficiency for each training variable. In order that the sum

of the two histograms remain constant, the plots are given variable bin widths. The resulting

plots display the ratio of signal to background in the training samples as a function of the

variable considered, albeit with varying bin widths. These plots can be found in Appendix D.

The variables used to train and score the B+
c → B0

s π
+ neural network are summarized in

Table 16.

11.4 Signal and Background Samples Used in Training

Because it was found that isolation would not be a critical factor in differentiating signal from

background (see Section 11.7), B-Gen Monte Carlo was used to simulate signal of B+
c → B0

s π
+

decays. For background, data in the range of 1.2GeV/c2 ≤ ∆m≤ 2.0GeV/c2 – a kinematically

forbidden, upper sideband to signal, as described in Section 2.3.3 – is used. The amount of

background used in training was constrained such that the number of events would not be

greater than the number of signal events. The samples for each of the modes are shown in

Figure 51.
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Figure 51: The upper sideband of ∆m, from ∆m=1.2 GeV/c2 is used to select prompt B0
s

candidates from the data sample as a B+
c → B0

sπ
+ background, while signal is extracted

from B+
c → B0

sπ
+ Monte Carlo.
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Training Variables for the
B+

c → B0
sπ

+, B0
s → J/ψ φ

Neural Network
pT (B+

c )
Lxy(B

+
c )

σLxy
(B+

c )
Prob(B+

c )
χ2

rφ(B+
c )

|d0(B
+
c )|

Prob(B0
s)

χ2
rφ(B0

s )

|d0(B
0
s)|

σd0(B
0
s)

NN Score(B0
s)

|mass(B0
s) − 5.366 GeV/c2|
Lxy(B0

s)
σLxy

(B0
s)

pT (Track)
|d0(Track)|

d0(Track) w.r.t B0
s

σd0(Track)
d0(Track) signed w.r.t B0

s

∆z0(Track,B0
s)

Table 16: Training variables for the B+
c neural network.
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11.5 Checking for ∆m Bias

Ultimately, ∆m is used to identify B+
c → B0

s π
+ candidates after selection has been performed.

As discussed in Section 2.3.3, ∆m compares the mass of the B0
s alone to the combination of the

B0
s with the daughter track of the B+

c candidate. This is an effective technique, as resolution

effects for the B0
s are canceled, allowing signal events to occupy a narrow window in ∆m,

located at approximately 910 MeV/c2 with a gaussian width of less than 10 MeV/c2.

To ensure that each B+
c neural network trained in this analysis is not biased in ∆m, in-

creasing cuts on B+
c neural network score are applied, and the effect on the distribution of ∆m

in upper sideband data is examined. The result, as shown in Figure 52 is a flat efficiency as a

function of ∆m for each neural network, which indicates the neural networks are unbiased.

11.6 Optimizing the Final B+
c

→ B0
s
π+ Neural Network Cut

An optimal cut on B+
c neural network cut is selected by maximizing S

1.5+
√

B
while running over

a mixture of signal Monte Carlo and background (upper sideband data). This figure of merit

was chosen as it is mathematically appropriate to maximize the chance of finding a 3σ signal

when a search is expected to have low signal to background ratios [55]. Signal Monte Carlo is

not counted as contributing to S of the optimization unless the candidate is within a narrow

window around the ∆m signal peak, |∆m−0.910 GeV/c2| ≤ 0.018 GeV/c2. The optimized cut

value, which appears as the peak in the distribution of S

1.5+
√

B
over varying B+

c neural network

score cuts, is shown in Figure 53.

After optimization, the B+
c neural network selects a cut at a score of 0.994. This score is

driven to a high value, eliminating the vast majority of background, by nature of the figure of

merit, S

1.5+
√

B
. The result will be a highly purified sample, albeit with a sizable penalty to the

efficiency of the analysis.

11.7 Consideration of Simultaneous Selection Cuts

In the interest of considering every tool in the toolbox, the effect of implementing multiple,

simultaneous cuts to select B+
c candidates was evaluated. On top of the B+

c neural network
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Figure 52: Above: The distribution of ∆m (with the B+
c → B0

sπ
+ signal window blinded)

is shown for B+
c candidates in data as selected by varying B+

c neural network cuts. The
tallest histogram has no B+

c neural network cut applied. Below: The acceptance of the B+
c

neural network cuts shown in the above plot are shown by dividing each plot by the uncut
histogram. Because the upper sideband remains flat and unsculpted, the neural networks
can be considered unbiased.
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. The peak
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found at 0.994 is visible.

103



cut, which is sure to be the vital selection tool of this analysis, eight additional kinematic cuts

were considered: ∆R(B0
s ,π+), B+

c track helicity angle, B0
s neural network score, probability of

B+
c vertex, pT of the B+

c daughter track, daughter track impact parameter signed with respect

to the B0
s , ∆z0(B

0
s ,π+), and pT (B+

c ).

Using Scenario I B+
c Monte Carlo to simulate signal candidates and upper sideband data to

model background, varying cuts for each of the nine parameters were considered. Optimizing

the yield (by maximizing the quantity S

1.5+
√

B
) showed that B+

c neural network score would

indeed be the most stringently used parameter. The globally optimized cut throws away more

candidates using the neural network score than any other single variable (by a factor of 4).

Further, five of the variables were not used by the global optimization for selection in any way.

The collection of these optimized cut values are shown in Figures 54 through 56.

Because background becomes sparse with these tight selection criteria, the benefit of apply-

ing the two selection cuts on top of a stringent B+
c neural network cut was compared to the

effect of an optimized B+
c neural network cut alone. The result, shown in Figure 57, (which

is in line with expectation from Figure 53) is that the B+
c neural network can perform quite

well without the help of simultaneous optimization among eight other variables. That is to

say, the B+
c neural network appears to be doing all the heavy lifting, so to speak. Further, the

additional of other variables for a global optimization hurts signal yield dramatically. For this

reason, only an optimized B+
c neural network score cut is applied to select B+

c candidates over

background.

Another variable was also considered for optimization, but not used – the number of passing

candidates per event. This cut was considered for its ability to serve as a measure of isolation.

However, after applying basic selection cuts (including a very loose B+
c neural network cut), the

number of passing candidates per event falls to exactly one for nearly every remaining event.

Thus, this variable is not useful for pre-selection. (To study this particular parameter, Pythia

Monte Carlo was compared with upper sideband data for the B0
s → J/ψ φ mode.)
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Figure 54: Figures 54 through 56: After simultaneous selection cuts on nine different vari-
ables are considered, the number of signal and background candidates passing a cut on each
optimized variable is plotted for signal (red) and background (black). The cross-hatch shaded
bin corresponds to the optimized cut.
Immediately to the right of each of these histograms, in blue, is a plot of the value of S

1.5+
√

B

as a function of the varying cut value. In all plots, S is the number of candidates in B-Gen
Monte Carlo with ∆m between 0.849 GeV/c2 and 0.969 GeV/c2, while B is measured as
the number of upper sideband candidates from data with ∆m between 1.2 GeV/c2 and 2.0
GeV/c2.
In this figure, B+

c neural network score, B0
s neural network score, and ∆R(track,B0

s) are
shown.
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Figure 55: In this figure, Track Helicity Angle (cos θ), B+
c vertex probability, and track pT

are shown. An explanation of the figures is found in the caption of Figure 54 and in the text.
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Figure 56: In this figure, track d0 signed with respect to the B0
s , ∆z0 between the track

and the B0
s , and B+

c pT are shown. An explanation of the figures is found in the caption of
Figure 54 and in the text.
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Figure 57: Using only B+
c neural network score to select B+

c → B0
s π+ candidates, a

minimum score cut, varying from 0.04 to 1.00, is applied to Monte Carlo simulation of signal
and upper sideband data. The number of candidates passing each neural network cut are
shown for signal (red) and background (black). The bin corresponding to the optimal cut in

S

1.5+
√

B
is cross-hatch shaded. A plot of this figure of merit as a function of the varying cuts

is shown in blue, also with the optimal bin shaded. Comparing this to Figures 54 through
56 shows that the B+

c neural network will be the primary tool for selection in this analysis,
regardless of how many variables are employed in an optimization. This single variable
optimization will thus be the preferred selection method.
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11.8 Final Event Selection

Candidate events from data are selected using the optimized cut and plotted on top of the

distribution of (Scenario I) B-Gen Monte Carlo candidates after the identical selection criteria

are applied. Binning of the ∆m plot is chosen to ensure that 95% of the Monte Carlo peak

spans four bins. These four bins, ranging from [0.892, 0.928] GeV/c2, are considered the signal

window. As shown in Figure 58, there are zero candidates in the signal window of data.

As a cross-check on the B+
c neural network, the cut is moved to a number of other, nearby

values. By examining the yield within the signal window for alternative B+
c neural network

cut values, it can be verified that the selection cut chosen is not excessively precise. Figure 59

shows that, for values below the optimized neural network cut, there is no evidence of any

excess of events within the signal window.

109



)
2

m (GeV/c∆
0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

2
C

an
d

id
at

es
 p

er
 9

 M
eV

/c

0

1

2

3

4

5

 NN selection -- CDF II Preliminary+
c candidates in data after B+

cm of B∆

Final Data Selection

Expected Signal Distribution

from Scenario I MC (Arbitrary Height)

 NN selection -- CDF II Preliminary+
c candidates in data after B+

cm of B∆

Figure 58: After applying the optimized B+
c neural network cut, the distribution of ∆m for

B+
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+ have no events. The location of these bins is demonstrated by a gaussian

(of arbitrary height) with a width and mean value determined by Scenario I B+
c Monte Carlo

as selected by the B+
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Figure 59: Varying the B+
c neural network cut to values below the optimized selection

criteria shows that no excess of signal is found in the nearby, non-optimized selections. In
each plot, the signal window is shaded and the binning changed such that the signal window
occupies exactly one bin. From the ensemble of plots, it can be concluded that the selection
criteria does not suffer from excessive precision in the optimization.
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12 Extraction of the Ratio of Cross-Sections

The cross-section of the decay of B+
c → B0

sπ
+, B0

s → J/ψ φ, J/ψ → µ+µ−, φ→ K+K− can be

compared directly to the bb̄ cross-section as shown in equation 18.

σBc

def
= σ(B+

c → B0
sπ

+, B0
s → J/ψ φ, J/ψ → µ+µ−, φ→ K+K−) (18)

σBc
= σ(bb̄) · fc · B(B+

c → B0
sπ

+) · B(B0
s → J/ψ φ) · B(J/ψ → µ+µ−) · B(φ→ K+K−)

where pT (B+
c ) ≥ 4.0 GeV/c; |y(B+

c )| ≤ 1.0

In equation 18, σ(bb̄) represents the cross-section of bb̄ production at the Tevatron, fc is the

fragmentation function of c quarks (the frequency which with a b or b̄ quark will hadronize with

a c̄ or c quark to form a B+
c or its charge conjugate), and B(decay process) is the branching

fraction of a particular decay. Basic kinematic cuts are applied to the parent hadron (in this

case, the B+
c ) which thus become part of the definition of σBc

The cross-section of the equivalent prompt B0
s decay, i.e., the decay of B0

s → J/ψ φ, J/ψ →

µ+µ−, φ→ K+K−, can be defined in an identical manner, as shown in equation 19.

σBs

def
= σ(B0

s → J/ψ φ, J/ψ → µ+µ−, φ→ K+K−) (19)

σBs
= σ(bb̄) · fs · B(B0

s → J/ψ φ) · B(J/ψ → µ+µ−) · B(φ→ K+K−)

where pT (B+
s ) ≥ 4.0 GeV/c; |y(B+

s )| ≤ 1.0

The number of B mesons created and observed in this experiment should follow the relations

shown in equations 20 through 23. Because the branching fractions and kinematic quantities
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have been incorporated into the definitions of σBc
and σBs

, these values only reflect the J/ψ φ

search mode used in this analysis.

NBc
(prod) = σBc

· L (20)

NBs
(prod) = σBs

· L (21)

NBc
(obs) = σBc

· L · A · ǫ (22)

NBs
(obs) = σBs

· L · A · ǫ (23)

Here, Ni(prod) is the number of particles of species i produced in pp̄ collisions at the

Tevatron. Meanwhile, σi is the cross-section of species i for the experiment, while L is the

integrated luminosity of the experiment. Naturally, not all particles produced by nature will

be observed in the experiment. This leads to the terms of acceptance, A, and efficiency, ǫ,

explained below.

Acceptance is a multiplicative factor, ranging between 0 and 1, intending to account for

the inability of a detector to have complete fiducial coverage in tracking of the entire space

into which a particle could decay. After multiplying in the acceptance factor, the number of

expected particles no longer includes decays the detector could not possibly reconstruct. In

this analysis, acceptance is defined as the frequency with which B meson parent hadrons (B+
c

or prompt B0
s) have pT ≥ 4.0 GeV/c and |y| ≤ 1.0, where y is the rapidity, as defined in

equation 17. The daughter tracks must also have |y| ≤ 1.0 and pT ≥ 400 MeV/c2.

Efficiency is a final multiplicative factor, also ranging between 0 and 1, which accounts

for the number of particles the experiment and analysis do not identify as signal candidates.

Causes can include (but are not limited to) failure to reconstruct the decay due to tracking

errors, failure to correctly evaluate the mass of a particle, and failure of the neural network to

score signal above the threshold cut. Both the acceptance and the efficiency are evaluated in

this experiment using Monte Carlo and data. This is discussed in the next section.

The value of computing the ratio of cross-sections become clear as we take the ratio, and
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find the majority of terms in the above cross-section evaluations can cancel. This is shown in

equations 24 & 25. Equation 24 is drawn directly from equations 22 and 23, while equation 25

follows directly from equations 18 & 19.

σBc

σBs

=
NBc

(obs)

NBs
(obs)

·
(ABc

· ǫBc

ABs
· ǫBs

)−1

(24)

=
fc

fs

· B(B+
c → B0

sπ
+) (25)

∴
NBc

(obs)

NBs
(obs)

·
(ABc

· ǫBc

ABs
· ǫBs

)−1

=
fc

fs

· B(B+
c → B0

sπ
+) (26)

It is in this way that the number of B+
c → B0

sπ
+, B0

s → J/ψ φ decays observed in

this analysis can directly indicate the limit on the cross-section ratio, and thus, the limit

on B(B+
c → B0

sπ
+). As discussed in Section 2.3.3, this technique greatly simplifies the compu-

tation of the branching fraction, by using the cancelation of many nuisance variables and their

uncertainties.

12.1 NBs
(obs)

As shown in Figure 43, the number of B0
s candidates observed is well-modeled by a gaussian

fit to signal. The integral of the fitted gaussian, including the errors on the fit computed using

the covariance matrix from the fit, is equal to 5, 574 ± 97. This gives a relative error of 1.7%,

which is assigned as a statistical error.

12.2 The Relative Acceptance Ratio

As shown in the equation 26, the relative acceptance ratio,
ABc ·ǫBc

ABs ·ǫBs
, plays an important role

in computing the ratio of cross-sections. In specific, this factor directly indicates the fraction

of B+
c → B0

sπ
+ decays can be detected as B0

s candidates, without being identified correctly as

the B+
c candidates they are. Its value, and the error on that value, are computed using Monte

Carlo and data in the following way.
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12.2.1 ABs
· ǫBs

Using generator level Monte Carlo information, the prompt B0
s Monte Carlo sample (as de-

scribed in Chapter 6) is used to to compute the denominator of the relative acceptance ra-

tio. As prescribed in equation 19, the following kinematic cuts are placed upon the sample:

pT (B+
s ) ≥ 4.0 GeV/c; |y(B+

s )| ≤ 1.0. (These cuts are placed on the generator level quantities,

and not on the fitted values after detector simulation has been performed.) After the applica-

tion of these cuts, there are 499, 912 events in the sample. Within that collection, B0
s candidates

are selected using the optimized B0
s neural network, as optimized according to Section 10. This

leaves a final collection of 69, 279 events, for an acceptance on B0
s (after kinematic constraints)

of 13.9%.

While this value is here termed an acceptance, it is, in fact a combination of both acceptance

and efficiency, as indicated by its representation in equation 26. By nature of using the analysis

cuts to select B0
s candidates, the efficiencies of these analysis cuts are combined with the

acceptance of the detector, which is introduced in large part by the Monte Carlo simulation

software.

12.2.2 ABc
· ǫBc

In an analogous method to Section 12.2.1, the acceptance is computed on B+
c candidates as

generated in Scenario I B+
c → B0

sπ
+ Monte Carlo – see Chapter 6 for details on this sample.

As in Section 12.2.1, kinematic constraints are imposed according to equation 18. After these

constraints alone, the sample contains 1, 234, 868 events. Applying the analysis cuts described

in previous chapters, including the optimized B+
c neural network cut, the remaining collection

of 18, 954 candidates implies an acceptance of 1.53%.

12.2.3
ABc ·ǫBc

ABs ·ǫBs

The relative acceptance ratio value is the quotient of the two acceptances computed in Sections

12.2.1 and 12.2.2. The result is 1.53%
13.9% = 0.11. Systematic uncertainties on this quantity will be

discussed later in this Chapter. Statistical error on the relative acceptance ratio is considered

115



negligible given the size of the Monte Carlo samples used in this calculation.

12.2.4 Correction to ǫ Using Track Embedding Studies

The relative acceptance ratio, as computed in this Section, has thus far relied heavily on B

Generator Monte Carlo. While this Monte Carlo is considered quite reliable for many appli-

cations, it is worthwhile to consider the loss of charged particle tracking efficiency that may

occur in data, which is sure to have a higher detector occupancy during B+
c → B0

sπ
+ events

than does a simulated B+
c decay in the Monte Carlo. To correct for this efficiency, it is appro-

priate to express the term we have considered thus far as a relative acceptance using Monte

Carlo to compute efficiency, then multiply that term by a correction factor. This is shown in

equation 27.

(ABc
· ǫBc

ABs
· ǫBs

)−1

=





ABc
· ǫBc

(MC) ·
(

ǫBc (data+MC)
ǫBc (MC)

)

ABs
· ǫBs

(MC) ·
(

ǫBs (data+MC)
ǫBs (MC)

)





−1

(27)

While the acceptance and efficiency of this B+
c analysis is not readily separable into quan-

tities for the B0
s and the extra track, such a separation can be safely approximated for the

correction factor on efficiency (within some small systematic uncertainty due to Monte Carlo

modeling). This separability simplifies equation 27, as shown in equation 28.





ABc
· ǫBc

(MC) ·
(

ǫBc (data+MC)
ǫBc (MC)

)

ABs
· ǫBs

(MC) ·
(

ǫBs (data+MC)
ǫBs (MC)

)





−1

≈





ABc
· ǫBc

(MC) ·
(

ǫBs (data+MC)·ǫπ(data+MC)
ǫBs (MC)·ǫπ(MC)

)

ABs
· ǫBs

(MC) ·
(

ǫBs (data+MC)
ǫBs (MC)

)





−1

=





ABc
· ǫBc

(MC) ·
(

ǫπ(data+MC)
ǫπ(MC)

)

ABs
· ǫBs

(MC)





−1

(28)

In this approximation, a proper correction to the above estimation of the relative acceptance

ratio need only be applied with regard to the tracking efficiencies of a single track in Monte

Carlo versus data. That is, the quantity ǫπ(data+MC)
ǫπ(MC) needs to be computed.
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ǫπ(MC) In order to properly compute the efficiency of selection of the single extra track in

Monte Carlo, a study is performed on B0
s candidates identified (applying the relevant kinematic

constraints) within the Scenario I B+
c Monte Carlo. Within this collection of identified B0

s

candidates, the relevant efficiency is the fraction of pion B+
c daughter tracks (applying the

relevant kinematic constraints) that are identified by the simulation as tracks. Thus, inefficiency

of the Monte Carlo is described by this parameter only in cases where the B0
s from aB+

c → B0
sπ

+

decay is found, but the extra track is not identified as such. This fraction is shown as a function

of inverse pT of the track in Figure 60.

To compute an overall value of ǫπ(MC), a weighted average of entries in the plot of tracking

efficiency in Monte Carlo as a function of inverse pT (Figure 60) is performed. The weighting

is drawn directly from the spectrum of tracks in events passing the B+
c analysis cuts from a

sample of Scenario I B+
c Monte Carlo. This weighting spectrum is shown in Figure 61. The

result is an overall value of ǫπ(MC) = 0.907

ǫπ(data+MC) To estimate the efficiency on the B+
c track in data, the track embedding study

on a single track, performed in a recent B production cross-section is used [20]. In this study,

events in data are taken at the detector level, and an extra track is added as generated by Monte

Carlo. The frequency with which this extra track is identified by the detector simulation is

then considered the embedded track efficiency. The result is not precisely a measure of tracking

efficiency in data – indeed, it is a mixture of data and Monte Carlo – but the approximation is

considered quite realistic, within systematic error, as described later.

The tracking efficiency in data, as studied by the track embedding study decreases markedly

for low momentum (high inverse pT ) pions. Despite this, the average tracking efficiency is still

nearly as high as that for the Monte Carlo alone. Figure 62 shows the efficiency as a function

of inverse pT . Using the same weighting from Figure 61, the average tracking efficiency from

the study is ǫπ(data+MC) = 0.895.
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Figure 60: Above: In green, the number of B0
s candidates reconstructed within a B+

c Monte
Carlo sample (given some kinematic constraints), as a function of inverse pT of the track with
varying bin widths. In blue, the number of B+

c daughter track candidates identified as tracks
by the detector simulation within this sample. The structure seen in this plot is derived from
the variable bin width, and is not directly indicative of physics effects.Below : The fraction
of B+

c daughter tracks correctly reconstructed given the identification of the B0
s candidate

and relevant kinematic constraints. Overall, the efficiency is very steady over a wide range
of track momenta.
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12.2.5 The final estimate on relative acceptance ratio

Combining the measurements from Monte Carlo and data explained in this section, the overall

value of the relative acceptance ratio, given the kinematic constraints described in equations

18 and 19, is computed in equation 29.

(ABc
· ǫBc

ABs
· ǫBs

)−1

≈





ABc
· ǫBc

(MC) ·
(

ǫπ(data+MC)
ǫπ(MC)

)

ABs
· ǫBs

(MC)





−1

=

(

1.53% ·
(

0.895
0.907

)

13.9%

)−1

= (0.109)−1 = 9.21 (29)
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12.3 Systematic Error

Systematic errors originate from numerous sources in this analysis. To properly estimate the

ratio of cross-sections, these systematic errors will be reviewed. A listing of each systematic

error individually, as well as the total combined error is found in Table 17.

12.3.1 Error on Acceptance and Efficiency

The computation of the acceptance and efficiency in Section 12.2 relies heavily on simulation

of the B+
c meson by B Generator Monte Carlo. Because of the relatively low number of B+

c

meson decays that have been measured in all modes, the pT spectrum of the B+
c cannot be

assumed to be perfectly modeled by Monte Carlo. In light of this, the Scenario II B+
c → B0

sπ
+

sample can be used to approximate a very different, hypothetical B+
c pT spectrum.

Using Scenario II B+
c Monte Carlo (see Chapter 6), the resulting value of ABc

· ǫBc
was

37,576
1,579,910 = 2.38%. Here, the same kinematic requirements have been applied as in the original

calculation. This value is significantly higher than the original result of 1.53% from Scenario

I B+
c Monte Carlo. Because this value will be inverted in the final computation of the ratio

of cross-sections, and because Scenario II B+
c Monte Carlo is considered exceedingly opti-

mistic, the systematic error assigned to this acceptance and efficiency value is set to 20%, as

1
2 ·
(

2.38%−1.53%
2.38%

)

= 17.9%.

12.3.2 Error on Correction to ǫ Using Track Embedding Studies

The use of track embedding studies to correct for the use of B Generator Monte Carlo in

modeling background presents two sources of error. The larger of the two is due to the approx-

imation performed in equation 28, which presumes a separability of B0
s efficiency correction

and B+
c daughter track efficiency correction. Because this is not a proven assumption a priori,

a systematic of 10% is assigned to the resulting correction.

A second, smaller source of error comes from the track embedding study itself [56]. This

error itself is a mixture of uncertainties on low pT efficiency measurement, as well as uncertainty

on the amount of material within the inner detector region, both of which affect absolute track-
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finding efficiency. Its value is computed to be 2.6%.

12.3.3 Error on B0
s Signal Modeling and B0

s Polarization

Because the B0
s has been well-studied in data, allowing for Monte Carlo parameters related to its

kinematics to be cross-checked and tuned, the systematic error due to B0
s signal modeling in the

Monte Carlo is considered to be negligible. Similarly, the error due to B0
s polarization, which

is varied slightly between Scenario I and Scenario II B+
c Monte Carlo sets is also presumed

to be negligible. This is likely a safe assumption, as the B0
s is a spin zero (pseudo-scalar)

meson. Thus, the B0
s is unable to carry polarization information from the B+

c forward into the

kinematics of the final decay products.

Systematic uncertainties on the trigger efficiency do not contribute to the systematics of

this analysis, due to the cancelation that is performed in computing the relative acceptance

ratio.

12.3.4 Total Systematic Error

The total systematic error due to each factor described in this section, after adding in quadra-

ture, sums to 20.5%. Each factor, as described above, is listed in Table 17.

Source Value (in percent)
Relative Acceptance Ratio 20.0

Monte Carlo Modeling 10.0
Track Embedding 2.6
B0

s Signal Modeling negligible
B+

c Polarization negligible
Total (added in quadrature) 22.5

Table 17: Sources of systematic error in this analysis are listed, and summed in quadrature.
Detailed descriptions of each of these sources of error can be found in Section 12.3.

12.4 Statistical Error

The primary source of statistical error in this analysis is the size of the B0
s sample. As mentioned

in Section 12.1, the statistical error on the B0
s sample is 1.7%. Other sources of statistical error,
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such as the size of the Monte Carlo samples used to compute the relative acceptance ratio, are

considered negligible.

12.5 NBc
(obs)

The number of B+
c candidates appearing in the predefined signal window after final selection

is performed is zero. This can be seen in Figure 58, where no candidates appear in the range

0.892 GeV/c2 ≤ ∆m ≤ 0.928 GeV/c2. A limit is thus computed with a 95% confidence

interval to estimate the number of B+
c candidates produced. To properly compute this limit

requires the incorporation of uncertainties in acceptance in background. This is done following

the standard technique adopted by the CDF Collaboration of computing upper limits on such

Poisson processes with uncertainties on acceptance and expected background, which is hybrid

frequentist/Bayesian approach [57].

Computing an exact limit in closed form, while incorporating the uncertainties in acceptance

and background is out of the reach of this analysis. Indeed, this would require a normalized

integral of the probability density function associated with the observation of more than n0

events in the signal window, where n0 is the exact number of observed events. To compute a

95% confidence interval limit, the integral shown in equation 30 would need to be computed

for N such that ǫ would equal 5% [57].

ǫ =

n0
∑

n=0

1
√

2πσ2
N

∫ ∞

0

∫ ∞

0

P (n;µ′
B + µ′

S)e
− (µB−µ′

B
)2

2σ2
B e

− (N−µ′

S
)2

2σ2
N dµ′

Bdµ
′
S

n0
∑

n=0

∫ ∞

0

P (n;µB)e
− (µB−µ′

B )2

2σ2
B dµ′

B

(30)

Here, µB is the average number of background events among the n0 observed; σB is the over-

all (statistical plus systematic) gaussian uncertainty on µB; and σN is defined as NσA/A, where

A and σA are the overall acceptance (acceptance times efficiency) and the overall uncertainty

on the acceptance, respectively.

Rather than perform this integral, a numerical approximation is sought using a frequentist

algorithm. This algorithm is based on a toy Monte Carlo model, wherein pseudo-experiments
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Figure 63: By loosening the B+
c neural network cut on data, a linear template is fitted

for use in background modeling. This template is later normalized to the yield after final
selection.

are performed by sampling from model distributions. The resulting distributions of outcomes

are compared to the results of the actual experiment. Cases where the pseudo-experiment are

inconsistent with the data of the experiment help set a limit on the range of valid hypotheses.

To set a 95% confidence limit on the hypothetical number of signal events that could have been

observed in this experiment, varying signal hypotheses are attempted. Comparing these results

to experiment the minimal number of signal events that is inconsistent with data in 95% of

cases is extrapolated from a fit. Details of this methodology follow.

First, the mean expectation of background events is extrapolated from sidebands according

to a template. The template itself is produced by loosening the B+
c neural network cut, and

fitting the resulting ∆m distribution. This fit is shown in Figure 63. The fitted template is

normalized by the yield seen in the sidebands after final selection to determine the value of

expected background in the signal window, µB.

A similar template, a gaussian fitted to loosely selected Monte Carlo of signal is built, to

predict the distribution of signal events. The mean expectation of signal events is set before

beginning pseudo-experiments asNsig, the signal hypothesis. These mean values are then varied
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(in a gaussian way) by their uncertainties due to acceptance and efficiency. (In this case, the

uncertainty on signal is
(

Nsig
σA

A

)

, where, as before, A represents the combined acceptance

and efficiency measurement, and σA the estimated uncertainty on that value.) Each pseudo-

experiment, a value from the gaussian distributions for signal and background is selected. These

values are then used to construct Poisson distributions for signal and background (with mean

values equal to the selections from the gaussian). Values from the Poisson distribution are

then selected, and labeled nS and nB, respectively. At this point, the pseudo-experiment is

complete, and the next pseudo-experiment can begin, starting with the selection of values from

the gaussian distributions of signal and background.

The 95% confidence limit is then set when a value of Nsig can be found such that, after

a large number of pseudo-experiments, exactly 95% of pseudo-experiments are inconsistent

with the observed data. Inconsistent, in this situation, describes the observation of a non-zero

number of events in the signal window. Pseudo-experiments wherein background alone can be

considered responsible for the inconsistency with observation (that is, where nB > n0) are not

considered when setting this limit.

Again, we cannot exactly determine the value of Nsig for a 95% confidence limit, but nu-

merical approximation is capable of producing a very close approximation. Numerous signal

hypotheses are attempted. The resulting limit that can be set by each hypothesis is then fit

with a quadratic polynomial. The limit is then extrapolated by finding the value, from the fit,

for which Nsig crosses 95%. The accuracy of this method is, naturally, limited by computa-

tional resources as well as the quality of the quadratic fit to the results. The final fit from the

pseudo-experiments for this analysis is shown in Figure 64. The resulting value for the 95%

confidence limit on the signal hypothesis is 4.15 events.

95% C.L. (Nsignal events(observed)) = 4.15 events (31)

It is worthwhile to investigate the overall effect of systematic uncertainties on the limit

produced by this method. To do so, the numerical analysis is simply repeated with only
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Figure 64: As the signal hypothesis is varied, the numerical estimate of the confidence limit
increases. At the point where a quadratic fit to these data crosses 95%, a 95% confidence
limit on signal can be set.

statistical uncertainties playing a role in the computation. Naturally, the result is a tighter

limit, as can be seen in Figure 65. The 95% confidence limit on the signal hypothesis is reduced

to 3.86 events, tightening the limit by 7% in the absence of systematic uncertainties. This

demonstrates how systematic uncertainties weaken the 95% confidence limit on signal.

12.6 The Limit on
σBc

σBs

From the calculations in the previous sections, the computation of a limit on
σBc

σBs
is straight-

forward. From equation 24, the ratio is computed in the following way.
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Figure 65: To estimate the effect of systematic uncertainties on the limit, the collection of
pseudo-experiments is run again, setting the systematic uncertainties to zero. While artificial,
this provides an understanding of the role that uncertainties play in attenuating the limit.

95% C.L.

(

σBc

σBs

)

=
NBc

(obs)

NBs
(obs)

·
(ABc

· ǫBc

ABs
· ǫBs

)−1

(32)

=
4.15

5574
· (0.109)−1

= 0.00683

= 95% C.L.

(

fc

fs

· B(B+
c → B0

sπ
+)

)

Assuming, for a moment, that the ratio of fragmentation fractions
(

fc

fs

)

of B+
c to B0

s

is exactly equal to 0.014, as estimated in Section 2.3.3, the resulting 95% upper limit on

B(B+
c → B0

sπ
+) (as described in equation 25) will be 48.8%. While this number would not rule

out any known theoretical models, it is the first limit upon this quantity placed to date.
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95% C.L.
(

B(B+
c → B0

sπ
+)
)

≤ 49% (33)

Assuming
fc

fs

= 0.014

Because the assumed fragmentation fraction directly relies upon the theoretical prediction of

the branching ratio of B+
c → J/ψ π+, which is not precisely known, the result of the calculation

in equation 33 could be subject to some variation. Referring to the original prediction of the

B+
c → J/ψ π+ branching fraction, alternate potential models are mentioned that allow for

values as low as 8 × 10−4 [17]. Propagating this value through equation 14, the resulting ratio

of fragmentation fractions rises to
(

fc

fs

)

= 0.023, allowing a tighter 95% confidence limit on

B(B+
c → B0

sπ
+) ≤ 30%.
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13 Conclusions

The limit on the ratio of cross-sections placed by this analysis is the first of its kind. While the

limit is somewhat large, systematics do not play an overwhelming role in the estimation. (An

estimate with systematics excluded reduces the limit by approximately 7%.) As the Tevatron

and CDF II continue to operate, and continue to achieve higher instantaneous luminosities (in

delivery and trigger rates, respectively), the expected increase in data available for this search

(in particular, the quantity of B0
s events observed) can improve this limit further.

13.1 Opportunities for Further Study

The search mode chosen, B+
c → B0

s π
+, B0

s → J/ψ φ, is by no means the only available mode

in which to search for B+
c → B0

sX decays. Beyond the numerous other possible decay products

that could be associated with the B+
c daughter track (kaons, leptons, ρ, etc.), there are also

many other fully and partially reconstructed B0
s decay modes found in other trigger paths in

the CDF II recorded datasets. While the purity and narrow peak of B0
s → J/ψ φ make it an

obvious starting point, the high yield in hadronic peaks, such as B0
s → D−

s π+, D−
s → φ π−

(shown in Figure 66), give these alternate modes the capability to further the sensitivity of this

kind of study.
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Figure 66: The yield of B0
s candidates in the hadronic, B0

s → D−
s π+,D−

s → φ π− decay
mode. Adding decay modes such as this one is one of many ways to further the results of a
search for B+

c → B0
sX.
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A Artificial Neural Networks

The technique of attacking problems with an artificial neural network originated with early

attempts to study artificial intelligence. Research in the area continues today in the domain

of machine learning. The principle behind artificial neural networks is, simply, that a single

neuron is designed to take in multiple inputs, and provide a single output. The function that

determines the “onto” mapping of inputs to output, generally, is a sum on the inputs after each

is multiplied by a weighting coefficient.

This model derives from the functional understanding of a biological neuron. In the bio-

logical world, the neuron is a cell with a collection of dendrites on one end, which serve as

inputs, and an axon (with multiple terminals) which serves as an output. Dendrites respond

to electrical impulses from axon terminals in other neurons. These impulses are summed, and

when the total crosses a threshold, the axon delivers a pulse of its own to the axon terminals,

each of which connect to the dendrites of another neuron. The signaling of a neuron must cross

a synaptic barrier which reduces the received input at the dendrites of a forward neuron. In

this way, the synaptic efficiency is directly analogous to the weighting coefficient on each input

described above. A diagram demonstrating the structure of a biological neuron is shown in

Figure 67 [34].

Nucleus

Dendrites

Soma

Axon

Axon

TerminalsNEURON

Figure 67: A biological neuron, used as the theoretical model for artificial neural net-
works [34].

The role of the neural network, in theory, is to vary the weighting coefficients as well as
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the structure of the neural network (which inputs are connected to which outputs), until an

ideal mapping of inputs to outputs is derived. This is of particular value in an analysis such

as this, as well-defined, smoothly varying inputs are readily available in the form of kinematic

properties of a B+
c candidate. Further, the desired output is precisely known for Monte Carlo

simulation of signal and for a kinematically forbidden region of ∆m in data. Indeed, binary

classification problems such as this have been studied with artificial neural networks for some

time, especially within the field of high energy physics.

Inputs, multiplied by weighting coefficients, are summed by the “neurons” of an artificial

neural network. These sums are then mapped from the space of real numbers in the range of

[−∞,∞] to the range [0, 1], then subtracted by a threshold bias in order to create an activation

function. This activation function is typically created using a sigmoid function to perform the

mapping. A common sigmoid function, the logistic function is shown in Figure 68(a). The

model of a single artificial neuron, including the inputs, weights, sigmoid function and output,

is shown in Figure 68(b) [34].
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(a) The Logistic Curve
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Input
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x2

x3
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w3

Bias Value

Output

(b) Sigmoid Functionality of Neural Network

Figure 68: (a): A sigmoid function as defined by the logistic curve. (b): Each artificial
neuron in a neural network takes inputs, modulated by weighting coefficients, and produces
an output according to a sigmoid function [34].

This analysis makes use of the feed forward network structure which does not permit feed-

back loops during input evaluation, or “scoring.” The structure of a simple, three input, feed

forward neural network is shown in Figure 69. A hidden layer, where the weighting an evalu-

ations occur, is placed between the input and output. By design, the neural networks in this
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analysis have n− 1 artificial neurons, or “nodes”, available, where n is the number of inputs to

the network.

Input Layer Hidden Layer Output Layer

Figure 69: Arrangement of layers in a feed forward neural network. This structure prevents
any feedback loops during input evaluation [34].

Training is the critical step to developing a powerful neural network. The process of train-

ing is performed by tuning the weighting coefficients of the input parameters to values that

maximize the accuracy of the neural network in its classification of future inputs. To improve

performance, the n-dimensional space of inputs may be rotated to diagonalize the inputs to

the neural network. In the end, the neural network is designed to classify input candidates

as likely signal or background. Output scores for this analysis lie in the range [−1, 1], where

higher scores imply a higher probability of signal for the given collection of inputs.

During training, collections of input with known (desired) outputs are provided to training

software. It is critical then, that samples that simulate expected signal and background reflect

realistic scenarios as much as possible. Unrealistic samples are prone to mislead the neural

network, causing it to select a diagonalization and weighting coefficients that are inaccurate.

Assuming the inputs provided during training neural networks are realistic, the power of

the neural network is worth examining. There are numerous ways to define “power” in a binary

classification problem such as this one. A simple approach is to consider the proportion of signal

to background for a given range of output scores from the neural network. This proportion of

signal to background is termed “signal purity”, ranging from 0 to 1. In Figure 70, the signal

purity of candidates assigned a given score is shown to increase steadily as that score increases.
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Figure 70: The signal purity of the selected sample as a binned function of neural network
output. As desired, the fraction of candidates that are signal for a given neural network score
increases as that neural network score increases.
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The power of a neural network may also be evaluated by considered the effectiveness of ap-

plying a minimum cut on the output score in order to select signal over background. Naturally,

tightening a cut will improve signal purity, as shown in Figure 70. However, tighter cuts will

also lead to lower signal efficiency – the fraction of total signal inputs above the cut. A truly

powerful neural network will have cuts that provide both high signal purity and high signal

efficiency. In Figure 71, signal purity is plotted against signal efficiency for varying neural

network cuts for the B+
c neural network trained in this analysis. An ideal neural network will

maximize the area under the curve in this plot.
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Figure 71: A plot of signal purity against signal efficiency is shown for varying neural
network cuts. By one measure of neural network strength, a neural network should have a
cut value able to maximize both quantities. The ideal neural network, in this measure, should
maximized the area under the curve in this plot. This plot shows the notable performance
of the neural network used in this analysis.
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B B-Stntuple TCL Settings

B.1 bcbspi-Jpsi-stn.tcl

#-------------------------------------------------------------------------------

# External input all here

#-------------------------------------------------------------------------------

set env(SELECT_EVENTS) disable

set env(ENV_ACTION) off

set env(ALIGNMENT_FIX) 0

set env(ADD_STABLE_COV) 0

source $env(ENV_TCL_DIR)/init.tcl

source $env(ENV_TCL_DIR)/initBsMaker.tcl

set nRunLow XX-NRUN_LOW-XX

set nRunHigh XX-NRUN_HIGH-XX

#-------------------------------------------------------------------------------

# Get our tracks and the stable particle collections

#-------------------------------------------------------------------------------

set env(ADD_L00) true

set env(PRIMARY_VERTEX) 3

set env(POINTING_TYPE) 1

set env(TRACK_REFITTER) KAL

set env(REJECT_NOTT) 0

set env(ELOSS_LAYER) 0.0

source $env(ENV_TCL_DIR)/stdTracks.tcl

source $env(ENV_TCL_DIR)/trigTracks.tcl

source $env(ENV_TCL_DIR)/pions.tcl

source $env(ENV_TCL_DIR)/kaons.tcl

source $env(ENV_TCL_DIR)/protons.tcl

source $env(ENV_TCL_DIR)/muons.tcl
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source $env(ENV_TCL_DIR)/allMuons.tcl

#-------------------------------------------------------------------------------

# Prepare some stuff for taggers

#-------------------------------------------------------------------------------

source $env(ENV_TCL_DIR)/beamLine.tcl

source $env(ENV_TCL_DIR)/taggingPrep.tcl

#-------------------------------------------------------------------------------

# Analysis -- Get Jpsi

#-------------------------------------------------------------------------------

# only jpsi events (reject set 1)

module clone D_SS Jpsi-MM

module enable D_SS-Jpsi-MM

module talk D_SS-Jpsi-MM

source $env(ENV_TCL_DIR)/trigZero.tcl

Cuts

verbose set 0

reject set 1

massMin set 2.80

massMax set 3.75

chi2Max set 30

exit

D_SS-Jpsi-MM

iS1CollDesc set Muons

iS2CollDesc set Muons

oDCollDesc set Jpsi-MM

pid set 443

exit

exit

# Phi -> K K
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module clone D_SS Phi-KK

module enable D_SS-Phi-KK

module talk D_SS-Phi-KK

source $env(ENV_TCL_DIR)/trigZero.tcl

Cuts

verbose set 0

reject set 0

massMin set 1.00

massMax set 1.04

chi2Max set 30

deltaZ0Max set 1.5

exit

D_SS-Phi-KK

iS1CollDesc set All-Kaons

iS2CollDesc set All-Kaons

oDCollDesc set All-Phi-KK

pid set 333

exit

exit

# Ds -> Phi Pi

module clone D_DS Ds-PhiPi

module enable D_DS-Ds-PhiPi

module talk D_DS-Ds-PhiPi

source $env(ENV_TCL_DIR)/trigZero.tcl

Cuts

verbose set 0

reject set 0

massMin set 1.919

massMax set 2.019

chi2Max set 40

dMassConst set false

deltaZ0Max set 1.5
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exit

D_DS-Ds-PhiPi

iDCollDesc set All-Phi-KK

iSCollDesc set Pions

oDCollDesc set Ds-PhiPi

pid set 431

exit

exit

path create LowRes D_SS-Jpsi-MM \

D_SS-Phi-KK \

D_DS-Ds-PhiPi

path enable LowRes

# Bs -> J/psi Phi (J/psi -> Mu Mu, Phi -> K K)

module clone D_DD Bs-JpsiPhi-MM:KK

module enable D_DD-Bs-JpsiPhi-MM:KK

module talk D_DD-Bs-JpsiPhi-MM:KK

source $env(ENV_TCL_DIR)/trigZero.tcl

Cuts

verbose set 0

reject set 0

massMin set 4.60

massMax set 6.20

chi2Max set 50

dMassConst set true

d2MassConst set false

deltaZ0Max set 1.5

source $env(ENV_TCL_DIR)/fullPrimVtx.tcl

exit

D_DD-Bs-JpsiPhi-MM:KK

iD1CollDesc set Jpsi-MM

iD2CollDesc set All-Phi-KK
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oDCollDesc set Bs-JpsiPhi-MM:KK

pid set 531

exit

exit

# Bc -> Bs Pi -> J/psi Phi Pi (J/psi -> Mu Mu, Phi -> K K)

module clone D_DS Bc-BsPi-JpsiPhi-MM:KK

module enable D_DS-Bc-BsPi-JpsiPhi-MM:KK

module talk D_DS-Bc-BsPi-JpsiPhi-MM:KK

source $env(ENV_TCL_DIR)/trigZero.tcl

Cuts

verbose set 0

reject set 0

massMin set 5.40

massMax set 7.80

chi2Max set 50

# massConList set 443

dMassConst set false

deltaZ0Max set 1.5

source $env(ENV_TCL_DIR)/fullPrimVtx.tcl

exit

D_DS-Bc-BsPi-JpsiPhi-MM:KK

iDCollDesc set Bs-JpsiPhi-MM:KK

iSCollDesc set Pions

oDCollDesc set Bc-BsPi-JpsiPhi-MM:KK

pid set 541

exit

exit

path create BMesons D_DD-Bs-JpsiPhi-MM:KK \

D_DS-Bc-BsPi-JpsiPhi-MM:KK

path enable BMesons
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module clone CandsPruner Phi-KK

module enable CandsPruner-Phi-KK

module talk CandsPruner-Phi-KK

CandsPruner-Phi-KK

iDCollDesc set All-Phi-KK

iTCollList set Ds-PhiPi Bs-JpsiPhi-MM:KK

oDCollDesc set Phi-KK

exit

exit

module clone CandsPruner Kaons

module enable CandsPruner-Kaons

module talk CandsPruner-Kaons

CandsPruner-Kaons

iDCollDesc set All-Kaons

iTCollList set Phi-KK

oDCollDesc set Kaons

exit

exit

path create Pruning CandsPruner-Phi-KK \

CandsPruner-AllMuons \

CandsPruner-Kaons

path enable Pruning

#-------------------------------------------------------------------------------

# We must flavor tag the Bees and other stuff

#-------------------------------------------------------------------------------

module enable BTagger

module talk BTagger

BTagger

verbose set 0

# setting up neurobayes
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trackNetName set dat/pbnet_cone_sa_all_l00.nb

trackNetName2 set dat/pbnet_cone_sa_all_nol00.nb

jetNetName set dat/jetnet_cone_sa_all_l00.nb

# setting up the collections

iDCollList set B-JpsiK-MM \

B-JpsiKs-MM \

Bs-JpsiPhi-MM:KK \

Bc-BsPi-JpsiPhi-MM:KK

SSTtag set true

OSKTtag set false

JQTtag set true

SETtag set true

SMTtag set true

exit

exit

path create Tagging BTagger

path enable Tagging

#-------------------------------------------------------------------------------

# Stntuple part

#-------------------------------------------------------------------------------

module enable InitStntuple FillStntuple

module enable BsMakerModule

module talk BsMakerModule

# Jpsi

DefineDecaysBlock -name=Jpsi-MM -s1=Muons -s2=Muons

# # Jpsi with only one real muon leg

# DefineDecaysBlock -name=Bck-Jpsi-MM -s1=Muons -s2=AllMuons

# # K*0

# DefineDecaysBlock -name=KS-KPi -s1=Kaons -s2=Pions

# Phi

DefineDecaysBlock -name=Phi-KK -s1=Kaons -s2=Kaons
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# # Kshort

# DefineDecaysBlock -name=Ks-PiPi -s1=Pions -s2=Pions

# # Lambda

# DefineDecaysBlock -name=Lm-PPi -s1=Protons -s2=Pions

# Ds

DefineDecaysBlock -name=Ds-PhiPi -d1=Phi-KK -s1=Pions

# # Onia

# DefineDecaysBlock -name=Psip-JpsiK-MM -d1=Jpsi-MM -s1=Kaons

# DefineDecaysBlock -name=Psip-JpsiPiPi-MM -d1=Jpsi-MM -s1=Pions -s2=Pions

# DefineDecaysBlock -name=Psip-JpsiKs-MM -d1=Jpsi-MM -d2=Ks-PiPi

# DefineDecaysBlock -name=Psip-JpsiLm-MM:PPi -d1=Jpsi-MM -d2=Lm-PPi

# DefineDecaysBlock -name=Psip-JpsiKsPi-MM -d1=Jpsi-MM -d2=Ks-PiPi -s1=Pions

# DefineDecaysBlock -name=Etab-JpsiJpsi-MM:MM -d1=Jpsi-MM -d2=Bck-Jpsi-MM

# DefineDecaysBlock -name=Etab-JpsiPhi-MM:KK -d1=Jpsi-MM -d2=Phi-KK

# # B mesons

# DefineDecaysBlock -name=B-JpsiK-MM -d1=Jpsi-MM -s1=Kaons \

# -addTag -addDecayVtx -addBJet

# DefineDecaysBlock -name=B-JpsiKs-MM -d1=Jpsi-MM -d2=Ks-PiPi \

# -addTag -addDecayVtx -addBJet

# DefineDecaysBlock -name=Lb-JpsiLm-MM:PPi -d1=Jpsi-MM -d2=Lm-PPi \

# -addTag -addDecayVtx -addBJet

# DefineDecaysBlock -name=B-JpsiKS-MM:KPi \

# -d1=Jpsi-MM -d2=KS-KPi \

# -addTag -addDecayVtx -addBJet

# DefineDecaysBlock -name=B-PsipKS-JpsiPiPi:KPi-MM \

# -d1=Psip-JpsiPiPi-MM -d2=KS-KPi \

# -addTag -addDecayVtx -addBJet

DefineDecaysBlock -name=Bs-JpsiPhi-MM:KK \

-d1=Jpsi-MM -d2=Phi-KK \

-addTag -addDecayVtx -addBJet

DefineDecaysBlock -name=Bc-BsPi-JpsiPhi-MM:KK \

-d1=Bs-JpsiPhi-MM:KK -s1=Pions \
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-addTag -addDecayVtx -addBJet

# DefineDecaysBlock -name=Bc-JpsiDs-MM:PhiPi \

# -d1=Jpsi-MM -d2=Ds-PhiPi \

# -addTag -addDecayVtx -addBJet

# Bs** afficionados

# DefineDecaysBlock -name=BsS-BsPiPi-JpsiPhi-MM:KK \

# -d1=Bs-JpsiPhi-MM:KK -s1=Pions -s2=Pions

# # B mesons for X afficionados

# DefineDecaysBlock -name=B-XK-JpsiPiPi-MM \

# -d1=Psip-JpsiPiPi-MM -s1=Kaons

# DefineDecaysBlock -name=B-XKs-JpsiPiPi:PiPi-MM \

# -d1=Psip-JpsiPiPi-MM -d2=Ks-PiPi

# DefineDecaysBlock -name=B-XKS-JpsiPiPi:KPi-MM \

# -d1=Psip-JpsiPiPi-MM -d2=KS-KPi

# DefineDecaysBlock -name=Bs-XPhi-JpsiPiPi:KK-MM \

# -d1=Psip-JpsiPiPi-MM -d2=Phi-KK

# # Histogram file

histfile $env(ENV_ROOT_DIR)/$env(ENV_INPUT_FILE).root

exit

path create NTuple InitStntuple BsMakerModule FillStntuple

path enable NTuple

#-------------------------------------------------------------------------------

# Paths

#-------------------------------------------------------------------------------

path disable AllPath

path list

#-------------------------------------------------------------------------------

# Input

#-------------------------------------------------------------------------------

module input DHInput

module enable DHInput

module talk DHInput
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# Drop some stuff we do not need

source $env(ENV_TCL_DIR)/dropList.tcl

# Use dcache even if we run from root/static files (it works properly)

cache set DCACHE

# Appropriate inputfile(s) is read

source input.tcl

# Go over only 1 Run

selectEvents set run>=$nRunLow run<$nRunHigh

# Debugging

report set 40

show exclude

show include

exit

#-------------------------------------------------------------------------------

# Do It

#-------------------------------------------------------------------------------

action on "Timer Action"

begin -nev $env(ENV_NEVENTS)

show timer

exit
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C XTC2 Testing Software

On the following pages is the basic instruction manual for use in diagnostics and checkout of a

production XTC2 for use on the CDF II detector.
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Crate Operations Manual for XTC2 Diagnostics 
 

Use PuTTY to access the crate  
 To control the crate, you must first be logged into the 
LX machines.  Any SSH client can do this.  From 
Windows, you’ll probably find it easiest to use “PuTTY.”  
PuTTY requires no installation. 

Download PuTTY here: 

http://the.earth.li/~sgtatham/put
ty/latest/x86/putty.exe  

Changes to the default configuration: 

1) Under “Window”, increase the number of lines of scrollback from 200 to 200000 
2) Under “Session” � ”Bell”, change the bell setting to “Visual Bell (flash window)” in 

order to promote office-mate sanity. 
3) Under “Connection” � “SSH” � “X11”, Enable X11 forwarding and set  

X display location to localhost:0  

Add these extra aliases to .cshrc on your LX machine account 

Add the following lines to the file ~/.cshrc 

alias cdfsoft source ~/docdfsoft2.csh 
alias crate "rlogin -l vxcdf mvme2300d.hep.uiuc.edu "  
set autologout = 9999   

Note: For these changes to take effect, you will either have to restart your SSH session or type  
 

source ~/.cshrc  

 
Have a copy of docdfsoft2.csh  in your home area 

 
Your dcodfsoft2.csh  script should setup ssh capability for later use to compile code.   
 

#!/bin/csh –f 
 
setenv USESHLIBS 1 
 
source ~cdfsoft/cdf2.cshrc 
setup cdfsoft2 6.1.2 
setenv LD_LIBRARY_PATH "../shlib/Linux2-KCC_4_0:/us r/lib:$LD_LIBRARY_PATH" 
setup kerberos 
setup ssh 
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Log in to the crate at Loomis 
In the above setup, you added an alias for the crate login command to your .cshrc .  

Lx0.hep.uiuc.edu> crate 
   login: vxcdf 
   password: cdf347vx 

If this doesn’t successfully log you in, a few things to try include: 
1) Check that the crate is powered on, with the fans running. 
2) Check that the crate CPU is on and running in slot 1. 
3) Check that the orange ethernet cable is plugged into the crate. 
4) Ask around to see if anyone else is logged in.  (It’s one at a time.) 
5) Power-cycle crate.  Wait ~90 seconds before logging in. 

AFTER TRYING ALL OF THE ABOVE… 
6) Ask Dave Lesny if there is anything he needs to do to reconnect the crate to the 

network. 

Compiled Crate Programs are put on the Windows Network 
 

If you’d like to browse through the drive that is directly accessible to the crate, open the 
network folder \\Hep-ntweb\VxUsers\VxCDF  in windows: 

 

 
 

Now that you have an idea where the programs and their source code is kept, let’s run this 
piece of code.   

 
1) Log in to the crate, as explained above. 

lx0.hep.uiuc.edu> crate 
   login: vxcdf 
   password: cdf347vx  
 

2) Change to the directory with the code. 
cd “../xtctest” 

Note that unlike normal UNIX systems, arguments to cd  are quoted. 
Also note that the contents of “../xtctest ” are the same as  

\\Hep-ntweb\VxUsers\VxCDF\xtctest  
on the Windows network. 
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3) Load a program into memory. 

ld < xtc_comp 

 
 

4) Run the program by typing the name of its executable function 
run 

To find the function name, you’ll have to examine the source code. 
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5) Now the program is running.  Go ahead and exit by typing 28  
-> run 
Checking Slot Validity 
Crate configuration: 
  Slot  1: Crate CPU 
  Slot  2: TRACER 
  Slot  3: (empty) 
  Slot  4: Testclock 
  Slot  5: (empty) 
  Slot  6: (empty) 
  Slot  7: (empty) 
  Slot  8: (empty) 
  Slot  9: (empty) 
  Slot 10: (empty) 
  Slot 11: Finder 2/4 
  Slot 12: (empty) 
  Slot 13: TDC 
  Slot 14: (empty) 
  Slot 15: (empty) 
  Slot 16: (empty) 
  Slot 17: (empty) 
  Slot 18: (empty) 
  Slot 19: (empty) 
  Slot 20: (empty) 
  Slot 21: (empty) 
There are 2 cables: 
  Cable   0: TDC 13/0 to Finder 11/4 
  Cable   1: TDC 13/1 to Finder 11/3 
Initializing Testclock in slot 4 
Initializing TRACER in slot 2 
Initializing Finder in slot 11 
Initializing TDC in slot 13 
xtctest: The system cannot find the file specified.  
Opening Output File: XTC2_97.txt 
   Opened File XTC2_97.txt 
CPLD Firmware Version: 16 
Data FPGA Firmware Version: 4 
Kitchen Sink FPGA Firmware Version: 33 
Number of Time Bins in Design: 6 
=================================================== ======================================== 
Kitchen Sink placed in standard operating mode 
 
If this is a production board, its serial number is : 97 
 
Choose: 
   1)  Configure the FPGAs 
   2)  Display Firmware Version Numbers 
   3)  Display Current Register Contents 
   13)   6-bin: Program Registers - Prototype XTC, Standard Values (Boards 1,5-10) 
   14)   6-bin: Program Registers - Prototype XTC, ALT Values (Boards 2,3,4) 
   15)   6-bin: Program Registers - Production XTC,  Standard Values (Boards 1-131,134-
143,147-203) 
   16)   6-bin: Program Registers - Production XTC,  ALT Values (Boards 
0,132,133,144,145,146) 
   17)   6-bin: Connectivity Test 
   18)   6-bin: Finder Capture Functionality Test 
   19)   6-bin: Extended Finder Capture Functionali ty Test 
   20)   6-bin: L2 Buffer Test - Old Way (Doesn't a ssume address incrementation) 
   21)   6-bin: L2 Buffer Test - New Way (Assumes a ddress counter is incremented by 12 each 
time) 
   22) Load 2-Bin Design 
   23) Load ODLD Design 
   24) Modify a Register Value 
   25) ODLD-Finder Test (1 loop) 
   26) ODLD-Finder Test (100 loops) 
   27) Edgetest 
   28) Exit 
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> 28  

If the crate setup is incorrect, you’ll see errors.  The most typical error when a card 
is not reachable is  

FISION: S_errno_EIO (0x5): VME BERR received! 
which indicates an error on the VME Communication Bus.  

Writing and Compiling Code 
 

Edit code for use in the crate 
 
First, start with previous code, and modify it. 

cd ~ 
mkdir xtctest 
cp ~erogers1/xtctest/regtest4.c ./xtctest 
xemacs ./xtctest/regtest4.c & 

(Make sure you are running XWindows and have X11 forwarding enabled.) 
 
 Go to line 439 (M-x goto-line), and insert the following 
print statement. 
 

 
 Save your change, (C-x C-s) and you’re ready to 
compile this code. 

 
A few things worth noting in crate code... 

 
• The executable function here is  

int run(void)  { 
 

• Many VISION commands appear in this code 
VISIONwrite(boardHandle[tdc_slot], VMEADDRESSPREFIX  + i, sizeof(my_byte), &bytes, &my_byte); 

These commands send messages to cards in various crate slots.  In particular, 
this command writes the byte my_byte  to one register on the TDC card.  (All 
XTC2 registers are accessed via the TDC.) 

 

Compile crate code 
The VISION libraries that define the crate commands are available only on B0 machines, 

so it will be necessary to log in to 3 different machines to edit, compile, and test this code.   
 

   /***************************/ 
   /* Register Test Interface */ 
   /***************************/ 
   printf( " \n Hello World! \n " ); 
   printf("\n\n\n"); 
   printf("  XTC2 Register Test\n");  
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• Accessible by the crate 
• Holds the compiled 

programs 

• Middle man • Has the required 
VISION libraries for 
compilation 

 
Log in to b0doorway: 

lx0.hep.uiuc.edu> cdfsoft 
No default SAM configuration exists at this time. 
lx0.hep.uiuc.edu> kinit {YOURUSERNAME} 
Password for {YOURUSERNAME}@FNAL.GOV: 
lx0.hep.uiuc.edu> ssh –XA {YOURUSERNAME}@b0doorway.fnal.gov 

 
Add the following lines to b0doorway.fnal.gov:~/.cshrc  

    alias cpc1          "setup fision" 
    alias cpc2          "setup -q ppc vxworks" 
    alias cpc3          '$VXCC -I${FISION_DIR}/incl ude \!^.c' 
    alias cpc4          '$VXLD -g -o \!* \!*.o' 
    alias cpc           "cpc1; cpc2; cpc3 \!*; cpc4  \!*" 

As before, the changes will not take effect until you either logout and log back in, or type 
the command: source ~/.cshrc 

 
Copy your source code to the b0 machine, and compile it. 

mkdir ~/xtctest 
cd ~/xtctest/ 
scp {YOURUSERNAME}@lx0.hep.uiuc.edu:~/xtctest/regtest4.c ./ 
cpc regtest4 
scp ./regtest4 {YOURUSERNAME}@lx0.hep.uiuc.edu:~/xtctest/ 
 

Copy your compiled program from lx0.hep.uiuc.edu:~/xtctest/regtest4  to the 
Windows network directory using a Windows SSH utility, like “SSH Secure Shell Client” 

Now, log in to the crate, and run the new version 
of regtest4. You should see the program run as usual, 
with your added “Hello World! ” showing up. 
 

Checkout of XTC2s 
 
You can find plenty of information about XTC2s, including specifications, explanations of 

firmware versions, and register descriptions here: 
http://www.hep.uiuc.edu/engin/cdf/XFT2/index.htm  

 

Prepare an XTC2 for checkout 

ld < regtest4 
run 
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ld < regtest 
run  

Run regtest to insure the TDC and XTC2 are 
communicating properly with the crate CPU. 

ld < xtc_comp 
run 
     ...... 
> 2 28  

Check that CPLD version == 16 to insure 
that the XTC2’s CPLD is properly 
programmed, and therefore ready to have its 
FlashRAM programmed.  (If it’s anything 
other than 16, see the last page of this 
document.) 

ld < xtc_comp 
run 
     ...... 
> 12 28  

Reprogram the FlashRAM so that the 
FPGAs will have the most up-to-date 
configuration.  (This takes about 2 minutes.) 

After you’ve done these things, you’re ready to “check out” an XTC2 using xtc_comp…  

153



Using xtc_comp  to check out an XTC2 
 
To checkout an XTC2, run xtc_comp, and use each of the following commands (in order): 
 
The procedure for running these same tests on the B0 crate is available here. 

http://www-cdfonline.fnal.gov/ops/xft/nils/test2.ht ml  
ld < xtc_comp 
run 
     .......SETUP OUTPUT....... 
> 15  
     .....OPTION 15 OUTPUT..... 
> 17  
     ......TEST 17 OUTPUT...... 
> 18 
     ......TEST 18 OUTPUT...... 
> 19 
     ......TEST 19 OUTPUT...... 
> 21 
     ......TEST 21 OUTPUT...... 
> 27 
     ......TEST 27 OUTPUT...... 
> 28  

NOTE: Each test output is both printed and recorded in a file in the Windows 
directory.  You can access the last results of a particular board’s tests by opening  

\\Hep-ntweb\VxUsers\VxCDF\xtctest\XTC2_ {SERIAL_NUM} .txt 

 
What each test in the checkout does... 

15) 6-Bin: Program Registers – Production XTC, Stan dard Values...    
 This option configures each of the write accessible registers with their default values.  
An explanation of each register is available at the website mentioned above. 
17) 6-Bin: Connectivity Test 
 The connectivity test instructs the TDC and XTC2 to begin sending an event of all 
zeros.  After a few such events have been sent, it inspects the Finder’s RAM, and compares 
it to its expectation.  The Finder expects to find all zeros, along with the correct formatting of 
B0 and Word0 signals.  The test repeats using all ones, all zeros, and all ones again, for a 
total of 4 events worth of information being read out. 
 This is essentially a test of equipment between the TDC output module and the Finder 
input module.  No XTC2 logic is used here. 
18) 6-Bin: Finder Capture Functionality Test 
 The Finder Capture test is nearly identical to the connectivity test.  The most notable 
difference is that random words are created in a couple of  XTC2 timing windows, and the 
Finder RAMs are checked to insure that those words are properly formatted.  This is a good 
test of XTC2 logic functionality, and channel-by-channel accuracy. 
 This test starts with a quick scan to determine approximately where the XTC2 timing 
windows are.  Also, 100 events are tested, compared to only 4 events in the connectivity test. 
19) 6-Bin: Extended Finder Capture Functionality Te st 
 This test is exactly the same as the previous, with 100 times as many events tested. 
21) 6-Bin: L2 Buffer Test – New Way ... 
 The L2 Buffer is a memory device on the output end of the XTC2.  It stores, for testing 
purposes, the output of the XTC2 before it is sent on toward the Finder.  If the XTC2 has 
shown correct functionality in the Finder Capture tests above, this can subsequently check 
the functionality of the L2 Buffer by comparing what it records to what the Finder receives. 
 The test is run in the same way as the Finder Capture functionality tests, except the 
inputs and outputs it compares are different.  Instead of comparing XTC2 input to Finder 
output, it compares Finder output to XTC2 output (in the L2 buffer).   
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27) Edgetest 
 Edgetest uses pulses from the Tracer to search, channel-by-channel, for the timing of 
each edge of the XTC2 logical windows.  On the input side of the XTC2, there are 11 
windows (6 output + 5 not-sure).  This test scans with variable sized pulses to find each 
windows beginning and end. 

 At the end of the test, a 12 by 96 table of timing values is displayed.  Currently, there is no 
“failure” mode of this test, but it can be used to search for anomalous behavior on a specific 
channel. 
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Identifying error messages in xtc_comp  
The successful output of the tests in the checkout of an XTC2 is shown below. 
 

17) 6-Bin: Connectivity Test   
Notice the 4 events captured, reading all zeros, all ones, all zeros, and all ones again.  The 

far right column displays the XOR between what is “written” (input to the TDC) and what is “read” 
(read out of the Finder).  This should always be zero.  The last lines sum the errors over the course 
of the whole test.  The B0 and W0 errors should be 0, and there should be no channel errors.   
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* Event      1: TDC 11/0  0000 0000 0000  0000 0000  0000  0000 0000 0000  0000 0000 0000  0000 
0000 0000  0000 0000 0000 
* Event      1: TDC 11/1  0000 0000 0000  0000 0000  0000  0000 0000 0000  0000 0000 0000  0000 
0000 0000  0000 0000 0000 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word= 5:06 w=20000 
r=20000 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word= 6:07 w=20000 
r=20000 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word= 7:08 w=20000 
r=20000 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=23:06 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=24:07 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=25:08 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=41:06 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=42:07 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=43:08 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=59:06 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=60:07 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=61:08 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word= 5:06 w=20000 
r=20000 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word= 6:07 w=20000 
r=20000 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word= 7:08 w=20000 
r=20000 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=23:06 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=24:07 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=25:08 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=41:06 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=42:07 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=43:08 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=59:06 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=60:07 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=61:08 w=    0 r=    
0 x=    0 
Test results: 
  Cable   0: TDC 11/0 to Finder  5/4   Total=          64 Errors=          64 
  Cable   1: TDC 11/1 to Finder  5/3   Total=          64 Errors=          64 
* Event      1: TDC 11/0  FFFF FFFF FFFF  FFFF FFFF  FFFF  FFFF FFFF FFFF  FFFF FFFF FFFF  FFFF 
FFFF FFFF  FFFF FFFF FFFF 
* Event      1: TDC 11/1  FFFF FFFF FFFF  FFFF FFFF  FFFF  FFFF FFFF FFFF  FFFF FFFF FFFF  FFFF 
FFFF FFFF  FFFF FFFF FFFF 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word= 5:06 w=2FFFF 
r=2FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word= 6:07 w=2FFFF 
r=2FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word= 7:08 w=2FFFF 
r=2FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=23:06 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=24:07 w= FFFF r= 
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FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=25:08 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=41:06 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=42:07 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=43:08 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=59:06 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=60:07 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=61:08 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word= 5:06 w=2FFFF 
r=2FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word= 6:07 w=2FFFF 
r=2FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word= 7:08 w=2FFFF 
r=2FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=23:06 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=24:07 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=25:08 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=41:06 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=42:07 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=43:08 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=59:06 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=60:07 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  0 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=61:08 w= FFFF r= 
FFFF x=    0 
Test results: 
  Cable   0: TDC 11/0 to Finder  5/4   Total=         128 Errors=         128 
  Cable   1: TDC 11/1 to Finder  5/3   Total=         128 Errors=         128 
* Event      1: TDC 11/0  0000 0000 0000  0000 0000  0000  0000 0000 0000  0000 0000 0000  0000 
0000 0000  0000 0000 0000 
* Event      1: TDC 11/1  0000 0000 0000  0000 0000  0000  0000 0000 0000  0000 0000 0000  0000 
0000 0000  0000 0000 0000 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word= 5:06 w=20000 
r=20000 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word= 6:07 w=20000 
r=20000 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word= 7:08 w=20000 
r=20000 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=23:06 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=24:07 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=25:08 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=41:06 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=42:07 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=43:08 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=59:06 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=60:07 w=    0 r=    
0 x=    0 
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[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/0 F:05/4  Word=61:08 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word= 5:06 w=20000 
r=20000 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word= 6:07 w=20000 
r=20000 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word= 7:08 w=20000 
r=20000 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=23:06 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=24:07 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=25:08 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=41:06 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=42:07 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=43:08 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=59:06 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=60:07 w=    0 r=    
0 x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  0 Loop =   1 T:11/1 F:05/3  Word=61:08 w=    0 r=    
0 x=    0 
Test results: 
  Cable   0: TDC 11/0 to Finder  5/4   Total=         192 Errors=         192 
  Cable   1: TDC 11/1 to Finder  5/3   Total=         192 Errors=         192 
* Event      1: TDC 11/0  FFFF FFFF FFFF  FFFF FFFF  FFFF  FFFF FFFF FFFF  FFFF FFFF FFFF  FFFF 
FFFF FFFF  FFFF FFFF FFFF 
* Event      1: TDC 11/1  FFFF FFFF FFFF  FFFF FFFF  FFFF  FFFF FFFF FFFF  FFFF FFFF FFFF  FFFF 
FFFF FFFF  FFFF FFFF FFFF 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word= 5:06 w=2FFFF 
r=2FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word= 6:07 w=2FFFF 
r=2FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word= 7:08 w=2FFFF 
r=2FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=23:06 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=24:07 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=25:08 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=41:06 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=42:07 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=43:08 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=59:06 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=60:07 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/0 F:05/4  Word=61:08 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word= 5:06 w=2FFFF 
r=2FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word= 6:07 w=2FFFF 
r=2FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word= 7:08 w=2FFFF 
r=2FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=23:06 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=24:07 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=25:08 w= FFFF r= 
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FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=41:06 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=42:07 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=43:08 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=59:06 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=60:07 w= FFFF r= 
FFFF x=    0 
[M] Window#=3  Calib Signal=  1 Test Value=  1 Loop =   1 T:11/1 F:05/3  Word=61:08 w= FFFF r= 
FFFF x=    0 
Test results: 
  Cable   0: TDC 11/0 to Finder  5/4   Total=         256 Errors=         256 
  Cable   1: TDC 11/1 to Finder  5/3   Total=         256 Errors=         256 
 
B0 Errors: 0 
W0 Errors: 0 
Channel Errors (out of a possible 16): 
   No Channel Errors Found 

If the highlighted section shows no errors, the XTC2 passes Test 17 
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18) 6-Bin: Finder Capture Functionality Test   
The test starts by scanning for the 6 XTC2 output windows using the Tracer.  The test then 

uses the results of the scan to calculate the timing of each of the 6 windows.  The test then 
randomly selects up to 2 windows to test, and fills those windows with random bits.  The first and 
last 2 events of this successful test are shown.  According to the last line, no read-back errors 
occurred in this test.   

Finding optimal TRACER fine delay value settings...  
 
000000000000000000007accccccccccccccccccccccccccccc c5200000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 00000000 
0000000000000000000 
Calibration Signal=0  Window=0  Min= 22  Max= 51  C hosen= 36 
 
000000000000000000000000000000000000000000000000000 0000000000000004acccccccccccccccccccb0
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 00000000 
0000000000000000000 
Calibration Signal=0  Window=1  Min= 68  Max= 86  C hosen= 77 
 
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
000000000000000cccccccccccccccccb852000000000000000 00000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 00000000 
0000000000000000000 
Calibration Signal=0  Window=2  Min=104  Max=120  C hosen=112 
 
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 7acccccccccccccccccccc7610000000000000
000000000000000000000000000000000000000000000000000 00000000 
0000000000000000000 
Calibration Signal=0  Window=3  Min=142  Max=161  C hosen=151 
 
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
2acccccccccccccccccccccccccccccccc66510000000000000 00000000 
0000000000000000000 
Calibration Signal=0  Window=4  Min=180  Max=211  C hosen=195 
 
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
000000000000000000000000000000000000000000000000010 6ccccccc 
ccccccccccc20000000 
Calibration Signal=0  Window=5  Min=230  Max=247  C hosen=238 
 
000000000000000000000047ccccccccccccccccccccccccccc c6660000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 00000000 
0000000000000000000 
Calibration Signal=1  Window=0  Min= 24  Max= 51  C hosen= 37 
 
000000000000000000000000000000000000000000000000000 0000000000000000000037cccccccccccccccc
c96100000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 00000000 
0000000000000000000 
Calibration Signal=1  Window=1  Min= 73  Max= 89  C hosen= 81 
 
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
00000000000000000003ccccccccccccccccc66600000000000 00000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 00000000 
0000000000000000000 
Calibration Signal=1  Window=2  Min=109  Max=125  C hosen=117 
 
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 0001bccccccccccccccccc9660000000000000
000000000000000000000000000000000000000000000000000 00000000 
0000000000000000000 
Calibration Signal=1  Window=3  Min=145  Max=161  C hosen=153 
 
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
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006ccccccccccccccccccccccb6600000000000000000000000 00000000 
0000000000000000000 
Calibration Signal=1  Window=4  Min=181  Max=202  C hosen=191 
 
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000
0000000000000000000000000000000000000000017cccccccc cccccccc 
ccca000000000000000 
Calibration Signal=1  Window=5  Min=221  Max=239  C hosen=230 
Beginning random data testing... 
* Event      0: TDC 11/0  0000 0000 0000  0000 0000  0000  0000 0000 0000  0000 0000 0000  
0000 0000 0000  0000 0000 0000 
* Event      0: TDC 11/1  0000 0000 0000  0000 0000  0000  0000 0000 0000  0000 0000 0000  
0000 0000 0000  0000 0000 0000 
* Event      1: TDC 11/0  1041 A828 EE21  0000 0000  0000  0000 0000 0000  0000 0000 0000  
0000 0000 0000  0000 0000 0000 
* Event      1: TDC 11/1  9507 904C 6A08  0000 0000  0000  0000 0000 0000  0000 0000 0000  
0000 0000 0000  0000 0000 0000 
 

..... 
 
* Event     98: TDC 11/0  0000 0000 0000  059E A0C4  4151  0000 0000 0000  0000 0000 0000  
0000 0000 0000  0000 0000 0000 
* Event     98: TDC 11/1  0000 0000 0000  0409 0A22  1445  0000 0000 0000  0000 0000 0000  
0000 0000 0000  0000 0000 0000 
* Event     99: TDC 11/0  0000 0000 0000  0000 0000  0000  4828 1614 2494  0000 0000 0000  
1487 C80B 4829  0000 0000 0000 
* Event     99: TDC 11/1  0000 0000 0000  0000 0000  0000  2951 1154 3081  0000 0000 0000  
968A A628 C42A  0000 0000 0000 
Test Results:  Events:100  Errors:0  

19) 6-Bin: Extended Finder Capture Functionality Te st   
The output for this test is identical to the previous, except that the number of 

events is 10,000 instead of 100. 
 

21) 6-Bin: L2 Buffer Test – New Way ...  
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This test has essentially the same output, though there are a few more messages 
printing the Bunch Count, the test has 50 events over each of the 4 L2 Buffers, and a 
grand-total of all four buffers is given at the end of the test.  The end of the test is shown 
here: 

Bunch Count: 21 
* Event     48: TDC 11/0  0000 0000 0000  0000 0000  0000  0000 0000 0000  0000 0000 0000  
204E 1D40 0B06  0000 0000 0000 
* Event     48: TDC 11/1  0000 0000 0000  0000 0000  0000  0000 0000 0000  0000 0000 0000  
00FB A416 1900  0000 0000 0000 
Bunch Count: 21 
* Event     49: TDC 11/0  B68C 3C45 5D2A  0871 0318  2080  0000 0000 0000  0000 0000 0000  
0000 0000 0000  0000 0000 0000 
* Event     49: TDC 11/1  A344 C8C2 C6D2  0CAA 041C  3900  0000 0000 0000  0000 0000 0000  
0000 0000 0000  0000 0000 0000 
Bunch Count: 21 
 
Buffer 3 
Test Results:  Events:50  Errors:0 
               Buffer Errors:0 
 
 
 
Beginning test of the buffer content bits... 
 
Testing buffer 0 
Testing buffer 1 
Testing buffer 2 
Testing buffer 3 
 
Complete Test Results: 
Level 1 pipeline length (in CDFCLK periods): 4 
   Buffer 0: Events:   50     Capture Errors:     0      Buffer Errors:     0 
   Buffer 1: Events:   50     Capture Errors:     0      Buffer Errors:     0 
   Buffer 2: Events:   50     Capture Errors:     0      Buffer Errors:     0 
   Buffer 3: Events:   50     Capture Errors:     0      Buffer Errors:     0 
 
Buffer Content Bit Errors: 0  

 
27) Edgetest  

This test (as yet) does not display have a PASS/FAIL decision, and no errors are 
displayed.   The output is a 12 by 96 list of each channel’s 12 window timings as 
determined by the Tracer.  Generally, the columns should show consistent timings, 
channel-to-channel, board-to-board. 
 

Other XTC2 tests available on the Windows network drive 
The following tests, while not used in the checkout of an XTC2, can help diagnose 

problems. 
 

ODLD (Output Data Looping Design) 
This test loads an alternate FPGA configuration into the FlashRAM.  The different 
configuration does not perform XTC2 functionality; instead, it loops an output pattern.  

xtc_kill 
In a previous CPLD design, there were rare cases where an XTC2 would “die” while the 
FPGAs were being configured.  The only remedy at the time was to reprogram the CPLDs.  
To help diagnose this problem, xtc_kill was built to repeatedly configure the FPGAs 5000 
times an hour.  CPLD v16 should be immune this whole thing. 
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Reprogramming CPLDs  
1. Connect the computer “Tethys” to the XTC2 using the JTAG connector 

 
 
 
2. Power on the XTC2, by mounting it to the TDC and loading the pair into the crate. 

 
 
 
3. Load the Xilinx software on “Tethys” to Interact with the crate.  There is probably a 

button the Desktop, or in the Programs Menu 

      or  
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4. At the prompt, click Cancel 
 

 
5. Double-click “Boundary Scan” 
 

 
 
 
6. Click the “Initialize Chain” button 

 
 

7. The program will detect four programmable chipsets, (2 CPLDs & 2 FPGAs).  
You’ll be programming the CPLDs only.  The program will ask for 4 files.  

a. For the first file, choose 
C:\Xilinx\xtc2\fromGregforHeather\fpga_prog_cpld v1 6.jed 

 

b. For the second file, choose 
C:\Xilinx\xtc2\fromGregforHeather\fpga_prog_cpld v1 6.jed 
 

c. For the third and fourth files, choose “Bypass” 
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8. Last step.  Program the CPLDs. 
a. Right click on the first chipset and click “Program…” 

 
b. Click OK 
 
c. Right click on the second chipset and click “Program…” 

 
d. Click OK 

9. You’re done.  Close without saving, and remove the JTAG connector.  You’ve 
updated the CPLD version. 

 
If you can’t find the files on the local drive required to program the CPLDs, there are 

backups online at: 
 

http://www.hep.uiuc.edu/engin/cdf/XFT2/FPGA_Prog_CP LD_16.jed  
 
http://www.hep.uiuc.edu/engin/cdf/XFT2/Output_Buffe rs_CPLD_1.jed  
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D Neurobayes c© Node & Training Analysis

On the following pages is the collection of plots associated with the training of the B+
c neural

network.
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

NeuroBayes

Bc_Lxy

5th most important

PrePro: 94

added signi. 29.52

only this 102.99

signi. loss 20.13

corr. to others 74.10%
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

NeuroBayes

Bs_Mass

6th most important

PrePro: 34

added signi. 18.88

only this 96.02

signi. loss 16.06

corr. to others 51.80%
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
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Track_pT

7th most important

PrePro: 94

added signi. 16.36

only this 116.57

signi. loss 14.30

corr. to others 81.70%

0 0.2 0.4 0.6 0.8 1

e
v
e
n

ts

0

100

200

300

400

500

600

700
input node 21         fla

t

 0
.4

0
0
0
1

 0
.4

1
7
8
6

 0
.4

3
5
0
7

 0
.4

5
2
2
5

 0
.4

6
9
6
2

 0
.4

8
6
0
9

 0
.5

0
3
0
9

 0
.5

1
9
5

 0
.5

3
6
9
9

 0
.5

5
5
2
9

 0
.5

7
3
2
5

 0
.5

9
1
2
3

 0
.6

1
0
1
4

 0
.6

3
0
5
9

 0
.6

5
0
9
6

 0
.6

7
2
0
8

 0
.6

9
3
5
5

 0
.7

1
6
6
8

 0
.7

4
1
8
7

 0
.7

6
7
4

 0
.7

9
7
1

 0
.8

2
8
3
4

 0
.8

5
9
2
9

 0
.8

9
3
7
6

 0
.9

3
2
8
3

 0
.9

7
3
8
5

 1
.0

1
5
7

 1
.0

6
1
1

 1
.1

0
7
2

 1
.1

5
3
9

 1
.2

0
7
2

 1
.2

6
1
9

 1
.3

2
1

 1
.3

8
4
8

 1
.4

5
2
8

 1
.5

2
5
6

 1
.5

9
7
6

 1
.6

7
7
5

 1
.7

7
 1

.8
5
9
6

 1
.9

6
1
1

 2
.0

6
4
9

 2
.1

8
6
1

 2
.3

1
6
5

 2
.4

8
6
8

 2
.6

8
5
4

 2
.9

3
 3

.2
3
9

 3
.6

6
6
1

 4
.4

7
8
8

 1
6
.9

8
9

10 20 30 40 50 60 70 80 90 100

p
u

ri
ty

0

0.2

0.4

0.6

0.8

1

1.2   s
p

lin
e
 fit

-3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3

e
v
e
n

ts

0

1000

2000

3000

4000

5000

6000

       fin
a
l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
ig

n
a
l 
p

u
ri

ty

0

0.2

0.4

0.6

0.8

1

  s
e
p

a
ra

tio
n

178



 Teacher
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Bs_NNScore

8th most important

PrePro: 94

added signi. 14.76

only this 87.79

signi. loss 12.16

corr. to others 65.00%
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

NeuroBayes

Track_DeltaZ0

9th most important

PrePro: 94

added signi. 11.50

only this 58.16

signi. loss 10.00

corr. to others 38.20%
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

NeuroBayes

Bc_Absd0

10th most important

PrePro: 94

added signi. 7.74

only this 28.68

signi. loss 7.64

corr. to others 31.50%
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Bc_RPhiChi2

11th most important

PrePro: 94

added signi. 6.81

only this 21.95

signi. loss 5.67

corr. to others 78.00%
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Bs_LxyErr

12th most important

PrePro: 94

added signi. 5.81

only this 63.20

signi. loss 6.12

corr. to others 44.10%

0 0.2 0.4 0.6 0.8 1

e
v
e
n

ts

0

100

200

300

400

500

600

700

input node 11         fla
t

 0
.0

0
1
9
0
3
7

 0
.0

0
2
3
9
8
4

 0
.0

0
2
5
3
5
6

 0
.0

0
2
6
4
5
5

 0
.0

0
2
7
2
3
8

 0
.0

0
2
7
9
3
1

 0
.0

0
2
8
4
5
1

 0
.0

0
2
8
9
0
1

 0
.0

0
2
9
3
3
7

 0
.0

0
2
9
7
9
3

 0
.0

0
3
0
2

 0
.0

0
3
0
6
1
2

 0
.0

0
3
0
9
7
5

 0
.0

0
3
1
3
4
5

 0
.0

0
3
1
7
3
1

 0
.0

0
3
2
1
5
4

 0
.0

0
3
2
5
4
3

 0
.0

0
3
2
9
3
3

 0
.0

0
3
3
3
2
2

 0
.0

0
3
3
6
7
2

 0
.0

0
3
4
0
6
8

 0
.0

0
3
4
4
8
1

 0
.0

0
3
4
8
9
4

 0
.0

0
3
5
3
3
5

 0
.0

0
3
5
7
7

 0
.0

0
3
6
2
2
6

 0
.0

0
3
6
6
8
7

 0
.0

0
3
7
1
2
4

 0
.0

0
3
7
6
2
7

 0
.0

0
3
8
1
3
4

 0
.0

0
3
8
6
8
9

 0
.0

0
3
9
2
5
3

 0
.0

0
3
9
8
9

 0
.0

0
4
0
5
2
6

 0
.0

0
4
1
1
8
8

 0
.0

0
4
1
9
3
4

 0
.0

0
4
2
6
8
1

 0
.0

0
4
3
5
2
1

 0
.0

0
4
4
4
4
3

 0
.0

0
4
5
4
6
4

 0
.0

0
4
6
5
6
3

 0
.0

0
4
7
7
2
3

 0
.0

0
4
9
1
8
7

 0
.0

0
5
0
8
3
8

 0
.0

0
5
2
6
5
2

 0
.0

0
5
4
8
3
2

 0
.0

0
5
7
5
8
7

 0
.0

0
6
1
6
6
1

 0
.0

0
6
7
9
5
2

 0
.0

0
8
0
4
3
5

 0
.0

8
7
7
8
6

10 20 30 40 50 60 70 80 90 100

p
u

ri
ty

0

0.2

0.4

0.6

0.8

  s
p

lin
e
 fit

-3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3

e
v
e
n

ts

0

500

1000

1500

2000

2500

3000

3500

       fin
a
l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
ig

n
a
l 
p

u
ri

ty

0

0.2

0.4

0.6

0.8

1

  s
e
p

a
ra

tio
n

183



 Teacher

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Track_d0_wrt_Bs

13th most important

PrePro: 94

added signi. 5.41

only this 50.52

signi. loss 4.99

corr. to others 53.10%
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Bs_Absd0

14th most important

PrePro: 94

added signi. 4.09

only this 36.91

signi. loss 4.20

corr. to others 31.70%
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

NeuroBayes

Track_d0_signed_wrt_Bs

15th most important

PrePro: 94

added signi. 3.45

only this 69.85

signi. loss 4.42

corr. to others 77.70%
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Track_Absd0

16th most important

PrePro: 94

added signi. 3.00

only this 50.60

signi. loss 2.88

corr. to others 77.30%
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Bs_RPhiChi2

17th most important

PrePro: 94

added signi. 2.61

only this 14.36

signi. loss 2.34

corr. to others 77.70%
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PrePro: 94

added signi. 1.92

only this 74.78

signi. loss 1.85

corr. to others 84.70%
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19th most important

PrePro: 94

added signi. 0.58

only this 56.97

signi. loss 0.57

corr. to others 74.10%
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20th most important

PrePro: 94

added signi. 0.24

only this 12.38

signi. loss 0.36

corr. to others 78.90%

0 0.2 0.4 0.6 0.8 1

e
v
e
n

ts

0
50

100

150
200

250
300

350

400

input node 5         fla
t

 1
.0

0
0
9
e
-0

5
 3

.5
2
2
e
-0

5
 9

.8
8
7
7
e
-0

5
 0

.0
0
0
2
3
8
3
4

 0
.0

0
0
4
9
0
9
4

 0
.0

0
0
9
0
9
5
1

 0
.0

0
1
5
7
0
5

 0
.0

0
2
5
1
5
1

 0
.0

0
3
9
1
9
7

 0
.0

0
5
6
1
8
7

 0
.0

0
7
9
0
2
5

 0
.0

1
0
9
0
4

 0
.0

1
4
3
9
2

 0
.0

1
8
8
2
6

 0
.0

2
4
0
9
6

 0
.0

3
0
1
9
2

 0
.0

3
7
7
7
5

 0
.0

4
5
7
7
6

 0
.0

5
4
7
3
4

 0
.0

6
4
9
9
1

 0
.0

7
5
9
5
1

 0
.0

8
8
7
3
7

 0
.1

0
2
3
1

 0
.1

1
7
8
4

 0
.1

3
3
6
7

 0
.1

5
0
1
1

 0
.1

6
9

 0
.1

8
9
3
9

 0
.2

0
9
6
1

 0
.2

3
1
9
1

 0
.2

5
5
4
7

 0
.2

7
8
5
1

 0
.3

0
4
2
6

 0
.3

3
1
5
2

 0
.3

5
9
3
1

 0
.3

8
7
5
7

 0
.4

1
8
0
2

 0
.4

4
8
9
5

 0
.4

8
1
6
5

 0
.5

1
5
6
1

 0
.5

4
9
6
8

 0
.5

8
5
4

 0
.6

2
5
4
2

 0
.6

6
6
2
7

 0
.7

0
8
3
6

 0
.7

5
0
1
2

 0
.7

9
5
2
7

 0
.8

4
5
2

 0
.8

9
2
1
1

 0
.9

4
3
4
6

 0
.9

9
9
8
5

10 20 30 40 50 60 70 80 90 100

p
u

ri
ty

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75   s
p

lin
e
 fit

-3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3

e
v
e
n

ts

0

500

1000

1500

2000

2500

3000

3500

       fin
a
l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
ig

n
a
l 
p

u
ri

ty

0

0.2

0.4

0.6

0.8

1

  s
e
p

a
ra

tio
n

191



 Teacher


NeuroBayes

Bs_Prob

21st most important

PrePro: 94

added signi. 0.27

only this 10.80

signi. loss 0.27

corr. to others 78.60%
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